Динамический отклик железобетонного каркаса здания при сценарии удаления колонны
https://doi.org/10.33979/2073-7416-2024-115-5-82-94
Аннотация
В статье представлен простой, но эффективный метод оценки динамического отклика железобетонной конструкции при внезапном удалении несущей колонны. Локальная область над разрушенной колонной моделируется в виде двухпролетной балки с сосредоточенной массой m, расположенной в середине балки. Процесс удаления несущей средней колонны моделируется путем снижения значения внутреннего усилия R(t) в данной колонне до нуля за определенный короткий промежуток времени tr. Основываясь на предложенной модели, находим динамическое перемещение во времени точки, в которой находится сосредоточенная масса. Полученные результаты представляют интерес для решения прикладных задач, связанных с проблемой живучести, защиты зданий и сооружений от прогрессирующего обрушения, в частности при определении критериев деформативности железобетонных конструкций при особом напряженном состоянии.
Об авторах
Н. Т. ВуРоссия
Ву Нгок Туен, кандидат технических наук, доцент кафедры фундаментального образования
г. Москва
Н. В. Федорова
Россия
Федорова Наталья Витальевна, советник РААСН, доктор технических наук, профессор, зав. кафедрой промышленного и гражданского строительства
г. Москва
Список литературы
1. Kiakojouri F., Sheidaii M.R., De Biagi V., Chiaia B. Progressive collapse of structures: A discussion on annotated nomenclature // Structures. 2021. №29. С. 1417–1423. DOI:10.1016/J.ISTRUC.2020.12.006.
2. Pearson C., Delatte N. Ronan Point Apartment Tower Collapse and its Effect on Building Codes // Journal of Performance of Constructed Facilities. 2005. №2(19). С. 172–177. DOI:10.1061/(ASCE)0887 3828(2005)19:2(172).
3. GSA. Alternate path analysis and design guidelines for progressive collapse resistance. Washington D.C.: General Services Administration, 2016. 203 c.
4. UFC 4-023-03: Design of Buildings to Resist Progressive Collapse, US Department of Defense, Washington, DC USA, 2009.
5. СП 385.1325800.2018. Защита зданий и сооружений от прогрессирующего обрушения. Правила проектирования. Основные положения. М.: Минстрой России, 2018. 33 c.
6. Xuan Dat P., Tan K.H. Experimental study of beam–slab substructures subjected to a penultimate internal column loss // Engineering Structures. 2013. №55. С. 2–15. DOI:10.1016/J.ENGSTRUCT.2013.03.026.
7. Qian K., Li B. Performance of Three-Dimensional Reinforced Concrete Beam-Column Substructures under Loss of a Corner Column Scenario // Journal of Structural Engineering. 2013. №4(139). С. 584–594. DOI:10.1061/(ASCE)ST.1943-541X.0000630.
8. Sadek F., Main J.A., Lew H.S., Bao Y. Testing and Analysis of Steel and Concrete Beam-Column Assemblies under a Column Removal Scenario // Journal of Structural Engineering. 2011. №9(137). С. 881–892. DOI:10.1061/(ASCE)ST.1943-541X.0000422.
9. Yi W.J., He Q.F., Xiao Y., Kunnath S.K. Experimental study on progressive collapse-resistant behavior of reinforced concrete frame structures // ACI Structural Journal. 2008. №4(105). С. 433–439. DOI:10.14359/19857.
10. Yu J., Tan K.H. Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages // Engineering Structures. 2013. №55. С. 90–106. DOI:10.1016/j.engstruct.2011.08.040.
11. Pham A.T., Tan K.H. Static and Dynamic Responses of Reinforced Concrete Structures under Sudden Column Removal Scenario Subjected to Distributed Loading // Journal of Structural Engineering. 2018. №1(145). С. 04018235. DOI:10.1061/(ASCE)ST.1943-541X.0002214.
12. a corner Kai Q., Li B. Dynamic performance of RC beam-column substructures under the scenario of the loss of column—Experimental results // Engineering Structures. 2012. №42. С. 154–167. DOI:10.1016/J.ENGSTRUCT.2012.04.016.
13. Yu J., Rinder T., Stolz A., Tan K.-H., Riedel W. Dynamic Progressive Collapse of an RC Assemblage Induced by Contact Detonation // Journal of Structural Engineering. 2014. № 6(140). С. 04014014. DOI:10.1061/(ASCE)ST.1943-541X.0000959.
14. Weng Y.H., Qian K., Fu F., Fang Q. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse // Journal of Building Engineering. 2020. №29. С. 101109. DOI:10.1016/J.JOBE.2019.101109.
15. Pham A.T., Tan K.H., Yu J. Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse // Engineering Structures. 2017. №149. С. 2–20. DOI:10.1016/j.engstruct.2016.07.042.
16. Yu J., Luo L., Li Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios // Engineering Structures. 2018. №159. С. 14–27. DOI:10.1016/j.engstruct.2017.12.038.
17. Dusenberry D.O., Hamburger R.O. Practical Means for Energy-Based Analyses of Disproportionate Collapse Potential // Journal of Performance of Constructed Facilities. 2006. №4(20). С. 336–348. DOI:10.1061/(ASCE)0887-3828(2006)20:4(336).
18. Vlassis A.G., Izzuddin B.A., Elghazouli A.Y., Nethercot D.A., Vlassis A.G., Elghazouli A.Y., Nethercot D.A. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework // Engineering structures. 2008. № 30(5). С. 1308–1318.
19. Liu M., Pirmoz A. Energy-based pulldown analysis for assessing the progressive collapse potential of steel frame buildings // Engineering Structures. 2016. №123. С. 372–378. DOI:10.1016/J.ENGSTRUCT.2016.05.020.
20. Tsai M.H. An analytical methodology for the dynamic amplification factor in progressive collapse evaluation of building structures // Mechanics Research Communications. 2010. №1(37). С. 61–66. DOI:10.1016/J.MECHRESCOM.2009.11.001.
21. Amiri S., Saffari H., Mashhadi J. Assessment of dynamic increase factor for progressive collapse analysis of RC structures // Engineering Failure Analysis. 2018. №84. С. 300–310. DOI:10.1016/J.ENGFAILANAL.2017.11.011.
22. Khuyen H.T., Iwasaki E. An approximate method of dynamic amplification factor for alternate load path in redundancy and progressive collapse linear static analysis for steel truss bridges // Case Studies in Structural Engineering. 2016. №6. С. 53–62. DOI:10.1016/J.CSSE.2016.06.001.
23. Xu G., Ellingwood B.R. Probabilistic Robustness Assessment of Pre-Northridge Steel Moment Resisting Frames // Journal of Structural Engineering. 2011. №9(137). С. 925–934. DOI:10.1061/(ASCE)ST.1943541X.0000403.
24. Brunesi E., Parisi F. Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis // Engineering Structures. 2017. №152. С. 579–596. DOI:10.1016/J.ENGSTRUCT.2017.09.043.
25. Weng J., Lee C.K., Tan K.H. Simplified Dynamic Assessment for Reinforced-Concrete Structures Subject to Column Removal Scenarios // Journal of Structural Engineering. 2020. №12(146). С. 04020278. DOI:10.1061/(ASCE)ST.1943-541X.0002833.
26. Yu J., Guo Y. Nonlinear SDOF model for dynamic response of structures under progressive collapse // Journal of Engineering Mechanics. 2016. № 142(3).
27. Yu J., Yin C., Guo Y. Nonlinear SDOF Model for Progressive Collapse Responses of Structures with Consideration of Viscous Damping // Journal of Engineering Mechanics. 2017. №9(143). С. 04017108. DOI:10.1061/(ASCE)EM.1943-7889.0001339.
28. Kwasniewski L. Nonlinear dynamic simulations of progressive collapse for a multistory building // Engineering Structures. 2010. № 5(32). С. 1223–1235. DOI:10.1016/J.ENGSTRUCT.2009.12.048.
29. Song B.I., Sezen H. Experimental and analytical progressive collapse assessment of a steel frame building // Engineering Structures. 2013. №56. С. 664–672. DOI:10.1016/J.ENGSTRUCT.2013.05.050.
30. Liu M. A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse // Engineering Structures. 2013. (№48). С. 666–673. DOI:10.1016/J.ENGSTRUCT.2012.12.011.
31. ATC-40 (Applied Technology Council) Seismic evaluation and retrofit of concrete buildings. Redwood City: CA, 1996. 32. Priestley M.J.N., Grant D.N. Viscous damping in seismic design and analysis // Journal of earthquake engineering. 2005. №2(9). С. 229–255. DOI:10.1142/S1363246905002365.
32. Blandon C.A., Priestley M.J.N. Equivalent viscous damping equations for direct displacement based design // Journal of earthquake engineering. 2005. №2(9). С. 257–278. DOI:10.1142/S1363246905002390.
33. Liu T., Zhang Q. AP/VP specific equivalent viscous damping model for base-isolated buildings characterized by SDOF systems // Engineering Structures. 2016. №111. С. 36–47. DOI:10.1016/J.ENGSTRUCT.2015.12.024.
34. Chopra A.K. Dynamics of structures. Pearson Education India, 2007. 994 с.
Рецензия
Для цитирования:
Ву Н., Федорова Н.В. Динамический отклик железобетонного каркаса здания при сценарии удаления колонны. Строительство и реконструкция. 2024;(5):82-94. https://doi.org/10.33979/2073-7416-2024-115-5-82-94
For citation:
Vu N., Fedorova N.V. Dynamic response of reinforced concrete building frame under column removal scenario. Building and Reconstruction. 2024;(5):82-94. (In Russ.) https://doi.org/10.33979/2073-7416-2024-115-5-82-94