Methods for estimating the coefficient of variation of the resistance in the design of structures based on nonlinear finite element models
https://doi.org/10.33979/2073-7416-2020-88-2-64-74
Abstract
The reliability (safety) of the designed structures is ensured by using the design value of the bearing capacity, taking into account the uncertainty (variability, error) of the bearing capacity. Uncertainty is taken into account by means of a probabilistic model, which is represented as a distribution law with statistical parameters included in it. The most important and frequently used statistical parameters are the mean value and coefficient of variation.
Determining the coefficient of variation for the bearing capacity calculated on the basis of numerical models (computer modeling) is an important task, since existing classical methods cannot be applied. For this reason, the purpose of this article is to develop and study the accuracy of methods for determining the coefficient of variation of the bearing capacity calculated by computer modeling. The proposed method for determining the coefficient of variation is based on the decomposition of the function into a Taylor series, followed by the use of various numerical differentiation schemes. Verification was performed on generalized nonlinear models of load-bearing capacity, for which an exact solution can be obtained using the Monte Carlo method. The practical implementation of the proposed method is demonstrated on finite element models.As the results of the performed research, it is possible to identify the actual methods for determining the coefficient of variation of the bearing capacity calculated by computer modeling, and the values of the coefficients of variation for generalized models of the bearing capacity of thin-walled elements, taking into account the loss of local stability of the web and with the subsequent inclusion of the girder flanges in the work. The value of the coefficient of variation can be most accurately estimated using Taylor series expansion and numerical integration over 3 points, however, this method requires 2N+1 calculations, therefore it can be recommended only for individual verification tasks. As a practical method for estimating the coefficient of variation, Taylor series expansion and numerical integration by 2 points should be used (N+1 calculations are required).
About the Authors
V. V. TurRussian Federation
Tur Viktar V., Doctor of Technical Sciences, Professor, Head of the Department of Concrete Technology and Building Materials
Brest
V. V. Nadolski
Belarus
Nadolski Vitali V., candidate of technical science (PhD), docent, associated professor of the department of Building constructions; Associate Professor of the Department of Building Structures
Brest
Minsk
References
1. Rzhanicyn A. R. Teoriya rascheta stroitel'nyh konstrukcij na nadezhnost'[Theory of calculation of building structures for reliability]. Moskva : Strojizdat, 1978. 239 s.
2. Bolotin, V. V. Metody teorii veroyatnostej i teorii nadezhnosti v raschetah sooruzhenij [Methods of probability theory and reliability theory in calculations of structures]. Moskva : Strojizdat, 1982. 351 s.
3. Rajzer, V.D. Razvitie teorii nadezhnosti i sovershenstvovanie norm proektirovaniya [Development of reliability theory and improvement of design standards] Stroitel'naya mekhanika i raschet sooruzhenij. 1983. № 5. S. 1- 4.
4. Pichugin S., Zyma O. Method for reliability estimation of the main pipeline steelwork structure. Metal Constructions. 2014. Vol. 20. No 2. P. 77-87.
5. Pichugin S.F. Ocenka nadezhnosti elementov stal'nyh konstrukcij [Assessment of reliability of elements of steel structures]. Metallicheskie konstrukcii. 2008. T. 14. № 4. S. 227-236.
6. Tur V.V., Nadol'skij V.V. Kalibrovka znachenij chastnyh koefficientov dlya proverok predel'nyh sostoyanij nesushchej sposobnosti stal'nyh konstrukcij dlya uslovij Respubliki Belarus'. CHast' 1 [Calibration of the values of partial coefficients for checking the limiting states of the bearing capacity of steel structures for the conditions of the Republic of Belarus. Part 1] Stroitel'stvo i rekonstrukciya. 2016. №4 (66) S.73-84.
7. Tur V.V., Nadol'skij V.V. Kalibrovka znachenij chastnyh koefficientov dlya proverok predel'nyh sostoyanij nesushchej sposobnosti stal'nyh konstrukcij dlya uslovij Respubliki Belarus'. CHast' 2 [Calibration of the values of partial coefficients for checking the limiting states of the bearing capacity of steel structures for the conditions of the Republic of Belarus. Part 2] Stroitel'stvo i rekonstrukciya. 2016. №5 (67). S.69-75.
8. Nadol'skij V.V. Koefficienty nadezhnosti dlya nelinejnyh modelej nesushchej sposobnosti balok s gibkoj stenkoj [Reliability coefficients for nonlinear models of load-bearing capacity of beams with a flexible wall]. Vestnik MGSU. 2023. T. 18. Vyp. 6. S. 852–863. DOI: 10.22227/1997-0935.2023.6.852-863.
9. Volodarskij V. A. Opredelenie parametrov raspredelenij po koefficientu variacii [Determination of distribution parameters by coefficient of variation]. Metody menedzhmenta kachestva. 2016. № 7. S. 50-53.
10. Nadol'skij V.V. Statisticheskie harakteristiki pogreshnosti chislennyh modelej nesushchej sposobnosti dlya stal'nyh elementov [Statistical characteristics of the error of numerical models of bearing capacity for steel elements] Stroitel'stvo i rekonstrukciya. 2023. №3 (107). S.17-34. DOI: 10.33979/2073-7416-2023-107-3-17-34».
11. Han G., SHapiro S. Statisticheskie modeli v inzhenernyh zadachah [Statistical models in engineering problems] Moska: Mir, 1969. 395 s.
12. Cervenka V. Global safety format for nonlinear calculation of reinforced concrete. Betonund Stahlbetonbau. 2008. Vol. 103. P. 37–42.
13. Cervenka V. Global safety formats in fib Model Code 2010 for design of concrete structures. Proceedings of the 11th Probabilistic Workshop, Brno. 2013. Corpus ID: 215762212.
14. Schlune H., Plos M. Safety Format for the non-linear analysis of Concrete Structures. Engineering Structures. 2011. Vol. 33(8). DOI: 10.1016/j.engstruct.2019.05.029
15. Shlune H., Gylltoft K., Plos M. Safety format for non-linear analysis of concrete structures. Magazine of Concrete Research. 2012. Vol. 64(7). Pp. 563–74. 16. Lorenzo D., Ilario V., Mancini G. Global safety format for non-linear analysis of reinforced concrete structures. Structural Concrete. 2013. Vol. 14(1). P.29–42.
16. Sykora M., Markova J., Nadolski V. Application of Semi-Probabilistic Methods to Verification of Series System. Transactions of the VSB - Technical University of Ostrava. 2021. Vol. 21/2. pp. 80-85. Doi: 10.35181/tces-2021-0018.
17. Sykora M., Nadolski V., Novak L., Novak D., Diamantidis D. Pilot comparison of semi-probabilistic methods applied to RC structures with multiple failure modes. Proceedings of fib International Congress 2022. 2022. 10 p. DOI: 10.1002/suco.202270040.
18. Cervenka, V. Reliability – based non-linear analysis according to fib Model Code 2010. Structures Concrete, Jurnal of fib. 2013. Vol. 14. R. 19–28.
19. CEN. prEN 1992-1-1: Eurocode 2 – Design of concrete structures. Part 1-1: general rules and rules for buildings. CEN 2021. Brussels.
20. fib Model Code for Concrete Structures 2020 (draft). John Wiley & Sons, Berlin, Heidelberg, draft 2021.
21. Perel'muter A. V., Tur V.V. Gotovy li my perejti k nelinejnomu analizu pri proektirovanii? [Are we ready to switch to nonlinear analysis in design?]. International Journal for Computational Civil and Structural Engineering. 2017. Vol. 13. P. 86-102.
22. Novák, L. On taylor series expansion for statistical moments of functions of correlated random variables. Symmetry. 2020. Vol. 12. Paper 1379.
23. fib Bulletin 65, “fib Model Code 2020, draft“. 2021. URL: https://www.fib-international.org/publications/fib-bulletins/model-code-2010-final-draft,-volume-1-detail.html
24. Orlov A. I. Metod statisticheskih ispytanij v prikladnoj statistike [Method of statistical tests in applied statistics] Zavodskaya laboratoriya. Diagnostika materialov. 2019. T. 85. № 5. S. 67-79. DOI 10.26896/1028-6861-2019- 85-5-67-79.
25. Lepekhina N.V., Ababij V. D. Issledovanie metodom Monte-Karlo nekotoryh elementarnyh fiziko-himicheskih processov na poverhnosti [Monte Carlo investigation of some elementary physical and chemical processes on the surface] Izvestiya Tomskogo politekhnicheskogo universiteta. 2003. T. 306. № 4. S. 14-17.
26. Kas'yanov V.F., Sokova S. D., Kalinin V. M. Opredelenie vliyaniya sluchajnyh faktorov na nadezhnost' konstrukcij metodami matematicheskoj statistiki i teorii veroyatnostej [Determination of the influence of random factors on the reliability of structures by methods of mathematical statistics and probability theory] Estestvennye i tekhnicheskie nauki. 2015. № 2(80). S. 138-140.
27. JCSS Probabilistic Model Code // Joint Committee of Structural Safety [Electronic resource]. 2001. URL: http://www.jcss.ethz.ch.
28. Nadol'skij V. V., Martynov YU.S. Veroyatnostnoe modelirovanie soprotivleniya stal'nyh elementov [Probabilistic modeling of resistance of steel elements] Vestnik Polockogo gosudarstvennogo universiteta. 2015. № 8. S. 44-49.
29. Flores R. Resistance of Transversally Stiffened Hybrid Steel Plate Girders to Concentrated Loads : Doctoral Thesis. Barcelona, Polytechnic University of Catalonia, 2009. 221 p.
30. Roberts T.M., Shahabian F. Combined Shear and Patch Loading of Plate Girders. Journal Structural Engineer ASCE. 2000. Vol. 126. № 3. P. 316-321.
31. Nadol'skij V. V., Podymako V.I. Ocenka nesushchej sposobnosti stal'noj balki metodom konechnyh elementov pri sovmestnom dejstvii lokal'nyh i sdvigovyh usilij [Assessment of the bearing capacity of a steel beam by the finite element method under the combined action of local and shear forces] Stroitel'stvo i rekonstrukciya. 2022. №2 (100) S.26-43.
32. Nadol'skij V.V., Vihlyaev A.I. Ocenka nesushchej sposobnosti balok s gofrirovannoj stenkoj metodom konechnyh elementov pri dejstvii lokal'noj nagruzki [Assessment of the bearing capacity of beams with a corrugated wall by the finite element method under the action of a local load] Vestnik MGSU. 2022. T. 17. Vyp. 6. S. 693–706. DOI: 10.22227/1997-0935.202.
33. Nadol'skij V.V. Parametry chislennyh modelej nesushchej sposobnosti dlya stal'nyh elementov [Parameters of numerical models of bearing capacity for steel elements]. Stroitel'stvo i rekonstrukciya. 2023. № 1(1). S. 43-56. DOI: 10.33979/2073-7416-2023-105-1-43-56.
Review
For citations:
Tur V.V., Nadolski V.V. Methods for estimating the coefficient of variation of the resistance in the design of structures based on nonlinear finite element models. Building and Reconstruction. 2024;(4):64-74. (In Russ.) https://doi.org/10.33979/2073-7416-2020-88-2-64-74