Preview

Building and Reconstruction

Advanced search

METHOD OF STRUCTURAL RELIABILITY ANALYSIS BASED ON INTERVAL ESTIMATES OF RANDOM VARIABLES

https://doi.org/10.33979/2073-7416-2023-105-1-66-76

Abstract

The article presents an approach to structural reliability analysis based on interval estimates of random variables, which represent the boundaries of random variables’ variability. Numerical examples show that the use of such an approach in cases with nonlinear mathematical models of limit states allow to obtain a more cautious estimate of the failure probability with a decrease in the number of statistical hypotheses used. The proposed approach uses the Vysochanskij–Petunin inequality to justify the limits of variability of random variables without using hypotheses about the distribution shape of a random variable. The mathematical expectation and standard deviation are also represented by confidence intervals which increases the practical significance of the developed method. Algorithms for using the proposed approach are presented on numerical examples of estimates of the no-failure probability of structural elements.

About the Authors

Sergey Al. Solovyev
Vologda State University
Russian Federation

Vologda



Alexander Ed. Inkov
Vologda State University
Russian Federation

Vologda



Anastasia An. Solovyeva
Vologda State University
Russian Federation

Vologda



References

1. Du W., Ma J., Yue P., Gong Y. An Efficient Reliability Method with Multiple Shape Parameters Based on Radial Basis Function. Applied Sciences. 2022. Vol. 12. No. 19. P. 9689.

2. Zhou S., Zhang J., Zhang Q., Huang Y., Wen M. Uncertainty theory-based structural reliability analysis and design optimization under epistemic uncertainty // Applied Sciences. 2022. Vol. 12. No. 6. P. 2846.

3. Solov'yev S.A., Solov'yeva A.A., Umnyakova N.P., Kochkin A.A. Analiz problem otsenki indeksa nadezhnosti elementov stroitel'nykh konstruktsiy [Analysis of the problems of assessing the reliability index of elements of building structures] // Zhilishchnoye stroitel'stvo. 2022. No. 7. Pp. 32-39. (rus).

4. Li Q., Wang J., Su G. A Grasshopper Optimization Algorithm-Based Response Surface Method for NonProbabilistic Structural Reliability Analysis with an Implicit Performance Function // Buildings. 2022. Vol. 12. No. 7. P. 1061.

5. Elishakoff I., Ben-Haim Y. Convex Models of Uncertainty in Applied Mechanics. Amsterdam: Elsevier. 1990. 240 p.

6. Sun W., Yang Z. A comprehensive model for structural non-probabilistic reliability and the key algorithms // Computer Modeling in Engineering & Sciences. 2020. Vol. 123. No. 1. Pp. 309-332.

7. Jiang C., Li W. X., Han X., Liu L. X., Le P. H. Structural reliability analysis based on random distributions with interval parameters // Computers & Structures. 2011. Vol. 89. No. 23-24. Pp. 2292-2302.

8. Gao W., Wu D., Gao K., Chen X. Tin-Loi F. Structural reliability analysis with imprecise random and interval fields // Applied Mathematical Modelling. 2018. Vol. 55. Pp. 49-67.

9. Jiang C., Han X., Liu G.R., Li G.Y. The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient // Journal of Materials Processing Technology. 2007. Vol. 182. No. 1-3. Pp. 262–267.

10. Rzhanitsyn A.R. Teoriya rascheta stroitel'nykh konstruktsiy na nadezhnost' [Theory of calculation of building structures for reliability]. Moscow: Stroyizdat. 1978. 239 p. (rus).

11. Li K., Liu H. Structural Reliability Analysis by Using Non-Probabilistic Multi-Cluster Ellipsoidal Mode // Entropy. 2022. Vol. 24. No. 9. P. 1209.

12. Cao L., Liu J., Xie L., Jiang C., Bi R. Non-probabilistic polygonal convex set model for structural uncertainty quantification // Applied Mathematical Modelling. 2021. Vol. 89. Pp. 504-518.

13. Adishchev V. V., Shmakov D. S. Metod postroyeniya funktsii prinadlezhnosti s "pryamoy" obrabotkoy iskhodnykh dannykh [Method of constructing a membership function with “direct” processing of initial data] // Trudy NGASU. 2013. Vol. 16. No. 2(56). Pp. 45-66. (rus).

14. Pradlwarter H.J. The use of kernel densities and confidence intervals to cope with insufficient data in validation experiments // Comput. Methods Appl. Mech. Engrg. 2008. Vol. 197. Pp. 2550–2560.

15. Utkin L.V. Analiz riska prinyatiya resheniy pri nepolnoy informatsii [Decision risk analysis with incomplete information] Sankt-Peterburg; Nauka. 2007. 404 p. ISBN 978-5-02-025187-8 (rus).

16. Utkin V.S., Shepelina E.A. Raschet nadezhnosti osnovaniy fundamentov po kriteriyu prochnosti pri ogranichennoy nagruzke na nagruzku [Calculation of the reliability of foundation beds according to the strength criterion with limited information about the load] // Magazine of Civil Engineering. 2013. No. 1(36). Pp. 48-56. doi:10.5862/MCE.36.6 (rus).

17. Solov'yev S.A., In'kov A.E., Solov'yeva A.A. Metod rascheta nadezhnosti sharnirno-sterzhnevykh sistem pri interval'noy otsenke sluchaynykh velichin [A method for structural reliability analysis of trusses with interval uncertainty of random variables] // Stroitel'naya mekhanika i raschet nablyudeniya. 2022. No. 3(302). Pp. 28-34. doi:10.37538/0069-2383.2022.3.28.34. (rus).

18. Solov'yev S.A., In'kov A.E., Solov'yeva A.A. Analiz nadezhnosti elementov stal'nykh ferm pri interval'noy otsenke sluchaynykh velichin [Steel trusses elements reliability analysis based on random variables interval estimation] // Vestnik VoGU. Seriya: tekhnicheskiye nauki. 2022. No. 1(15). Pp. 53-57. (rus).


Review

For citations:


Solovyev S.A., Inkov A.E., Solovyeva A.A. METHOD OF STRUCTURAL RELIABILITY ANALYSIS BASED ON INTERVAL ESTIMATES OF RANDOM VARIABLES. Building and Reconstruction. 2023;1(1):66-76. (In Russ.) https://doi.org/10.33979/2073-7416-2023-105-1-66-76

Views: 215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)