Evaluation of the probability of the formation of ultimate deflections in a reinforced concrete beam with cracks on a stochastic base
https://doi.org/10.33979/2073-7416-2022-99-1-3-10
Abstract
The results of calculating a reinforced concrete beam on an elastic statistically inhomogeneous foundation after the formation of cracks in concrete are presented. The compliance coefficients of the base are considered as random stationary functions, and the load is assumed to be a random non-stationary function of the x coordinate. Strength parameters of concrete are taken as random Gaussian values. The distribution parameters are given for both the initial bending stiffness of a reinforced concrete beam and the stiffness of the beam after cracking, as a function of the random cube strength of concrete. The parameters of the distribution densities of the deflections of the beam before the formation of cracks in it, as well as after the formation of cracks, are determined. For an approximate solution of the differential equation for the bending of a reinforced concrete beam after the formation of cracks, the variational principle of stationarity of additional energy (the Castigliano functional) is used. This makes it possible to determine the probabilistic characteristics of the distribution of the equivalent constant stiffness of the beam, the probabilistic parameters of the distribution of beam deflections after cracking, as well as the total differential law of the distribution of deflections in a beam on an elastic foundation in an arbitrary section of the beam. The probability of occurrence of the limiting state in the form of exceeding the value of the deflections of the beam, the limiting standard value of the deflections, taking into account the possible formation of cracks in the beam, has been determined.
About the Author
P. D. DeminovRussian Federation
Deminov Pavel D. - сandidate of technical sciences, associate professor, associate professor of the department of Reinforced Concrete and Stone Structures
Moscow
References
1. Tamrazyan A.G., Dekhterev D.S., Karpov A.Ye., Laskovenko A.G. Opredeleniye raschetnykh parametrov dlya otsenki nadezhnosti platformennykh stykov panel'nykh zdaniy. V sbornike: Sovremennyye problemy rascheta zhelezobetonnykh konstruktsiy, zdaniy i sooruzheniy na avariynyye vozdeystviya. Pod redaktsiyey A.G. Tamrazyana, D.G. Kopanitsy. 2016. S. 413-416.
2. Tamrazyan A.G., Manayenkov I.K. K raschetu ploskikh zhelezobetonnykh perekrytiy s uchetom fakticheskoy zhestkosti secheniya. Nauchnoye obozreniye. 2015. № 8. S. 87-92.
3. Tamrazyan A.G., Dudina I.V. Vliyaniye izmenchivosti kontroliruyemykh parametrov na nadezhnost' prednapryazhennykh balok na stadii izgotovleniya. Жилищное строительство. 2001. № 1. S. 16-17.
4. Deminov P.D. K ocenke statisticheskih parametrov zhelezobetonnoj balki na uprugom osnovanii, imeyushchem stohasticheskie harakteristiki // Stroitel'stvo i rekonstrukciya. 2018. № 5 (79). S. 16-24.
5. Blagonadyozhin V.L., Kudryavcev E.P. Statisticheskoe issledovanie deformacij peschanyh osnovanij i truboprovodov podzemnyh volnovodnyh linij svyazi // Doklady nauchno-tekhnicheskoj konferencii po itogam nauchnoissledovatel'skih rabot za 1964-1965 g. Sekciya dinamiki i prochnosti mashin. M., Izdatel'stvo MEI, 1965. S.78-86.
6. Deminov P.D. Ocenka veroyatnostnyh harakteristik plotnosti veroyatnosti predel'noj poperechnoj sily v izgibaemyh zhelezobetonnyh elementah // Stroitel'stvo i rekonstrukciya. 2019. №5 (85). S. 11-16.
7. Deminov P.D. Ocenka veroyatnosti razrusheniya zhelezobetonnoj balki, lezhashchej na stohasticheskom uprugom osnovanii s dvumya koefficientami posteli, po naklonnomu secheniyu ot poperechnoj sily // Stroitel'stvo i rekonstrukciya. 2021. № 1 (93). S. 16-25.
8. Leont'ev N.N., Leont'ev A.N., Sobolev D.N. // Osnovy teorii balok i plit na deformiruemom osnovanii. M.: MISI, 1982. 119 s
9. Lejbenzon L.S. Kurs teorii uprugosti. M.-L.: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoj literatury, 1947. S.440-442.
10. Kiselev V.A. Raschet balok na uprugom osnovanii. M.: Izdatel'stvo MADI, 1981. S. 39-40.
11. Deminov P.D. Ocenka veroyatnosti vozniknoveniya nedopustimyh progibov v zhelezobetonnoj balke, lezhashchej na stohasticheskom osnovanii s dvumya koefficientami posteli, pod dejstviem nestacionarnoj sluchajnoj nagruzki // Tekhnologiya tekstil'noj promyshlennosti. 2019. № 4 (382). S. 48-53.
12. Krasovskij L.A. Osnovy avtomatiki i tekhnicheskoj kibernetiki. M.-L.: Gosenergoizdat, 1960. S.194-198.
13. Piskunov N.S. Differencial'noe i integral'noe ischislenie. V 2 t. SPb.: Mifril., Gl. red. fiz.-mat.lit., 1996. T.1. S. 128-131.
14. Kudryavcev L.D. Kratkij kurs matematicheskogo analiza. V 2 t. T.2. Differencial'noe i integral'noe ischislenie funkcij mnogih peremennyh. Garmonicheskij analiz. M.: FIZMATLIT, 2005. S. 172-173.
15. SP 52-101-2003 Betonnye i zhelezobetonnye konstrukcii bez predvaritel'nogo napryazheniya armatury. M.: 2004.
16. Matveeva T.A., Svetlichnaya V.B., Zotova S.A. Teoriya veroyatnostej: sistemy sluchajnyh velichin i funkcii sluchajnyh velichin / Ucheb. posobie / VolgGTU, Volgograd, 2006. S.36.
17. Reissner E. On some Variation Theorems in Elasticity. Problems of Continuum Mechanics. Contributions in Honor of N. I. Muskhelishvili. Philadelphia, 1961. Pp. 370-381.
18. Washizu K. Variational Method in Elasticity and Plasticity. Pergamon Press, 1982.
19. Aleksandrov A.V., Lashchenkov B.YA., SHaposhnikov N.N. Stroitel'naya mekhanika. Tonkostennye prostranstvennye sistemy. M.: Izdatel'stvo «Strojizdat», 1983. S.152-161.
20. Ventcel' E.S. Teoriya veroyatnostej: Ucheb. dlya vuzov. 6-e izd. ster. M.: Vyssh. shk., 1999. S. 280-285.
Review
For citations:
Deminov P.D. Evaluation of the probability of the formation of ultimate deflections in a reinforced concrete beam with cracks on a stochastic base. Building and Reconstruction. 2022;(1):3-10. (In Russ.) https://doi.org/10.33979/2073-7416-2022-99-1-3-10