Preview

Building and Reconstruction

Advanced search

A PROBLEM OF PILES STRUCTURAL RELIABILITY ANALYSIS ON THE STABILITY CRITERION IN PERMAFROST REGIONS

https://doi.org/10.33979/2073-7416-2021-96-4-3-16

Abstract

The increase in the rate of global warming directly affects the safety of buildings and structures on permafrost. The research presents the problem of reliability analysis for piles on permafrost soils by the stability criterion under the action of tangential forces of frost heaving. The two groups of piles reliability analysis methods are developed: for complete and limited statistical data about random variables in the models of limit states. Approximations of the dependences of the design resistances of permafrost soils to the shear along the freezing surface on the temperature are proposed. It can be used to estimate the freezing force that keeps the pile from buckling. The method for reliability monitoring and durability forecasting has been developed for piles on permafrost soils. The proposed method makes it possible to reasonably reduce the cost of reliability analysis in the initial periods, which can increase the number of buildings and structures being inspected by the similar costs.

About the Authors

Sergey Al. Solovyev
Vologda State University
Russian Federation


Leonid An. Sushev
Vologda State University
Russian Federation


Alexander Al. Kochkin
Vologda State University
Russian Federation


Anastasia An. Soloveva
Vologda State University
Russian Federation


References

1. Хрусталев Л.Н., Давыдова И.В. Прогноз потепления климата и его учет при оценке надежности оснований зданий на вечномерзлых грунтах // Криосфера Земли. 2007. № 2. С. 68-75

2. Wu Q., Zhang T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007 // Journal of Geophysical Research: Atmospheres. 2010. Vol. 115. Pp. 1-12

3. Анисимов О.А., Белолуцкая М.А. Оценка влияния изменения климата и деградации вечной мерзлоты на инфраструктуру в северных регионах России // Метеорология и гидрология. 2002. № 6. С. 15-22

4. Анисимов О.А., Лавров С.А. Глобальное потепление и таяние вечной мерзлоты: оценка рисков для производственных объектов ТЭК // Технологии ТЭК. 2004. №3. С. 78-83

5. Streletskiy D., Anisimov O., Vasiliev A. Permafrost degradation // Snow and ice-related hazards, risks and disasters. Academic Press. 2015. Pp. 303-344

6. Malkova G.V. Mean-annual ground temperature monitoring on the steady-state-station “Bolvansky” // Earth's Cryosphere. 2010. Vol. 14. No. 3. Pp. 3-14

7. Oberman N.G. Contemporary permafrost degradation of the European north of Russia // Proceedings of the Ninth International Conference on Permafrost, June 29-July 3. 2008. Pp. 1305-1310

8. Larsen P.H., Goldsmith S., Smith O., Wilson M.L., Strzepek K., Chinowsky P., Saylor B. Estimating future costs for Alaska public infrastructure at risk from climate change // Global Environmental Change. 2008. Vol. 18(3). Pp. 442-457

9. Streletskiy D.A., Shiklomanov N.I., Hatleberg E. Infrastructure and a changing climate in the Russian Arctic: a geographic impact assessment // Proceedings of the 10th International Conference on Permafrost. 2012. Vol. 1. Pp. 407-412

10. Стрелецкий Д.А., Шикломанов Н.И., Гребенец В.И. Изменение несущей способности мерзлых грунтов в связи с потеплением климата на Севере Западной Сибири // Криосфера Земли. 2012. Т. 16. № 1. С. 22-32

11. Connon R., Devoie E., Hayashi M., Veness T., Quinton W. The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada // Journal of Geophysical Research: Earth Surface. 2018. Vol. 123(2). Pp. 281-297

12. Akerman H.J., Johansson M. Thawing permafrost and thicker active layers in sub-arctic Sweden // Permafrost and periglacial processes. 2008. Vol. 19. No. 3. Pp. 279-292

13. Золина Т.В., Садчиков П.Н. Моделирование снеговой нагрузки на покрытие промышленного здания // Вестник МГСУ. 2016. № 8. С. 25-33

14. Соловьева А. А., Соловьев С.А. Метод оценки надежности элементов плоских ферм на основе р-блоков // Вестник МГСУ. 2021. Т. 16. № 2. С. 153-167

15. Jahani E., Shayanfar M.A., Barkhordari M.A. A new adaptive importance sampling Monte Carlo method for structural reliability // KSCE Journal of Civil Engineering. 2013.Vol. 17. No. 1. Pp. 210-215

16. Юделевич А.М. Системный подход к оценке надежности бетонных плотин // Известия Всероссийского научно-исследовательского института гидротехники им. Б.Е. Веденеева. 2017. Т. 284. С. 82-88

17. Уткин В.С., Уткин Л.В. Определение надежности строительных конструкций. Вологда: Вологодский государственный технический университет, 2000. 166 с

18. Zhang J., Du X. A second-order reliability method with first-order efficiency // Journal of Mechanical Design. 2010. Vol. 132. No. 10. Pp. 101006

19. Melchers R.E., Beck A.T. Structural reliability analysis and prediction. John Wiley & Sons, 2018. 528 p

20. Zadeh L.A. Fuzzy sets // Information and control. 1965. Vol. 8. Pp. 338-353

21. Соловьев С.А. Вероятностная оценка промышленной безопасности при неполной статистической информации // Безопасность труда в промышленности. 2020. № 9. С. 88-93


Review

For citations:


Solovyev S.A., Sushev L.A., Kochkin A.A., Soloveva A.A. A PROBLEM OF PILES STRUCTURAL RELIABILITY ANALYSIS ON THE STABILITY CRITERION IN PERMAFROST REGIONS. Building and Reconstruction. 2021;(4):3-15. (In Russ.) https://doi.org/10.33979/2073-7416-2021-96-4-3-16

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)