Preview

Building and Reconstruction

Advanced search

ANALYTICAL DESCRIPTION OF CONCRETE DEFORMATION DIAGRAMS FOR THE CALCULATION OF PLASTIC SURFACES FROM NONLINEARLY DEFORMABLE MATERIAL

Abstract

The influence of the form of the functional dependence of the stresses on deformations on the accuracy of determining the deflections of a plate from a nonlinearly deformed material is investigated. The requirements that must be fulfilled when choosing an analytic expression for the description of the functional dependence "σ-ε" are established. According to experimental data, it is established that the basic building materials have nonlinearly deformed deformation diagrams. Linear, power, parabolic, hyperbolic, exponential, trigonometric functions used to describe the deformation diagrams of cement concrete under compression are considered. Graphical and numerical data indicate that analytical functions describe the experimental "σ-ε" diagram with sufficient accuracy. It is shown that the basic physical parameters that determine the physical nonlinearity of the concrete deformation diagrams are the temporary resistance, the modulus of elasticity and the relative deformation corresponding to the temporary resistance of concrete.

About the Authors

V. P. Selyaev
Mordovian State University named after N.P. Ogarev
Russian Federation


P. V. Selyaev
Mordovian State University named after N.P. Ogarev
Russian Federation


M. F. Alimov
Mordovian State University named after N.P. Ogarev
Russian Federation


E. V. Sorokin
Mordovian State University named after N.P. Ogarev
Russian Federation


References

1. Лукаш П. А. Основы нелинейной строительной механики М.: Стройиздат, 1978. - С. 202.

2. Столяров Я.В. Введение в теорию железобетона М.; Л.: Гос. Изд-во строит. лит. 1941. - С. 447.

3. Попов Н.Н., Расторгуев Б.С. Расчет конструкций специальных сооружений М.: Стройиздат, 1990. - С. 208.

4. Байков В. Н., Горбатов С. В., Димитров З. А. Построение зависимости между напряжениями и деформациями сжатого бетона по системе нормируемых показателей. // Изв. вузов. Сер.: Стр-во и архитектура. - 1977. - № 6. С. 15-18.

5. Мурашкин Г. В., Мурашкин В. Г. Моделирование диаграммы деформирования бетона и схемы НДС // Изв. вузов. Сер.: Стр-во и архитектура. - 1997. - № 10. С. 4-6.

6. Мурашкин Г. В., Алешин А. Н., Гимадетдиков К. И. Тяжело нагруженные полы из бетона, твердеющего под давлением // Изв. вузов. Строительство - 1995, - № 12, с. 136-139.

7. Прокопович А.Д. К определению зависимости «σ-ε» с ниспадающим участком для бетона при сжатии железобетонных конструкций. // Куйбышев. гос. ун-т. им. А.И. Микояна. Куйбышев 1979. с. 33 - 39.

8. Smith G.M., Yound L.E. Ultimate flexural analysis based on Stress - Strein cureves of cylinders. Journal of the American Concrete Institute. - 1956. - Vol. 28(53), part 1 - N6 - p. 597 - 609.

9. Гениев Г. А. Некоторые задачи расчета стержней при общей нелинейной зависимости напряжений и деформаций. - В сб. статей ЦНИИПС. М., Госстройиздат, 1954, вып. 13.

10. Бондаренко В. М., Шагин А. Л. Расчет эффективных многокомпонентных конструкций. - М.: Стройиздат, 1987. - 175 с.

11. Карпенко Н.И. Общие модели механики желзобетона. - М.: Стройиздат, 1996.

12. Травуш В.И., Селяев В.П., Селяев П.В, Кечуткина Е.Л. О возможном квантовом характере деформаций и разрушения композитов // Промышленное и гражданское строительство. - 2016 - №9, с. 94 - 100.


Review

For citations:


Selyaev V.P., Selyaev P.V., Alimov M.F., Sorokin E.V. ANALYTICAL DESCRIPTION OF CONCRETE DEFORMATION DIAGRAMS FOR THE CALCULATION OF PLASTIC SURFACES FROM NONLINEARLY DEFORMABLE MATERIAL. Building and Reconstruction. 2018;(3):22-30. (In Russ.)

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)