Preview

Building and Reconstruction

Advanced search

Strength and Deformability of Biocidal Cement Composites

https://doi.org/10.33979/2073-7416-2025-122-6-99-122

Abstract

During the operation of buildings and structures, reinforced concrete structures are exposed to various loads that cause deformation and failure. The strength and elastic-plastic properties of modern concrete are controlled by introducing plasticizers, nanoadditives, and fillers. The biostability of composites is enhanced by adding biocidal additives. This article examines the deformation and failure of cement compositions modified with biocidal additives to create durable powder-activated concrete—a type of next-generation concrete. The potential of using guanidine-based compounds as a fungicide additive has been experimentally demonstrated. The key characteristics of concrete deformation processes are determined using stress-strain diagrams. Complete stress-strain diagrams for biocidal concrete are obtained and analyzed, showing a descending branch with an extended section of concrete loading at a constant, decaying strain rate, with a smooth decrease in stress. The concrete deformation diagram on the descending branch is fixed by the ultimate deformation, corresponding to the concrete achieving the maximum strength value, and the end point of the descending branch, corresponding to the residual strength of concrete. The dependences of the influence of the water/cement ratio and the biocidal additive on the main parametric points of the σ–ε diagram are studied. The obtained diagrams are analyzed. It is shown that the introduction of the biocidal additive increases the strength properties of the cement stone. Moreover, the role of the water-cement ratio is revealed: the strength of concrete on a test of normal consistency increased within the range of 12 to 65% (depending on the composition), with an increase in the water-cement ratio these changes are more significant – 29–79%. An increase in the water-cement ratio from 0.267 to 0.350 for compositions with a biocidal additive lead to a decrease in the strength of the cement stone by 27–39%

About the Authors

V. T. Erofeev
National Research Moscow State University of Civil Engineering
Russian Federation

Erofeev Vladimir T., Doctor of Technical Sciences, Professor of the Department of Building Materials

129337, Moscow, Yaroslavskoye Shosse, 26



M. A. Goncharova
Lipetsk State Technical University
Russian Federation

Goncharova Margarita A., Doctor of Technical Sciences, Professor, Head of the Department of Building Materials Science and Road Technologies of the Department of Industrial and Civil Engineering

Lipetsk



O. V. Tarakanov
Penza State University of Architecture and Construction
Russian Federation

Tarakanov Oleg V., Doctor of Technical Sciences, Professor, Professor of the Department of Real Estate Cadastre and Law

Penza



D. A. Svetlov
Soft Protector LLC
Russian Federation

Svetlov Dmitry A., Doctor of Technical Sciences, Director

195030, St. Petersburg, Khimikov St., 28, letter C, room. 1591



I. N. Maximova
Penza State University of Architecture and Construction
Russian Federation

Maximova Irina N., Candidate of Technical Sciences, Associate Professor

Penza



I. V. Erofeeva
National Research Moscow State University of Civil Engineering
Russian Federation

Erofeeva Irina V., Candidate of Technical Sciences, Associate Professor

129337, Moscow, Yaroslavskoye Shosse, 26



V. N. Kuchin
St. Petersburg Mining University of Empress Catherine II
Russian Federation

Kuchin Vyacheslav N., Candidate of Technical Sciences, Associate Professor

199106, St. Petersburg, Vasilyevsky Island, 21 Line, 2



D. V. Svetlov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Postgraduate Student 

195251, St. Petersburg, Politekhnicheskaya Ulitsa, 29



References

1. Karpenko N. I., Kruglov V. M., Soloviev L. Yu. Nonlinear deformation of concrete and reinforced concrete. - Novosibirsk: Publishing house of SUSPS, 2001. - 276 p.

2. Sheikin A. E., Chekhovsky Yu. V., Brusser M. I. Structure and properties of cement concrete. Moscow: Stroyizdat, 1979. - 344 p.

3. Grushko I. M. Tensile strength of concrete / I. M. Grushko, A. G. Ilyin, S. T. Rashevsky. - Kharkov: Publishing house of Kharkov University, 1973. - 155 p.

4. Polystructural theory of composite building materials / V. I. Solomatov, V. N. Vyrovoy, A. N. Bobryshev, et al. - Tashkent: Fan, 1991. - 342 p.

5. Iskhakov, I., Frolov, I., Ribakov, Y., 2022. Experimental verification of theoretical stress-strain model for compressed concrete considering the post-peak stage // Materials 15(17), 6064.

6. Y. Feng, Y. Su, N. Lu, S. Shah, Meta concrete: exploring the novel functionality of concrete using nanotechnology, Eng. Sci. (2020), https://doi.org/10.30919/es8d816.

7. S. Barbhuiya, B.B. Das, Water-soluble polymers in cementitious materials: a comprehensive review of roles, mechanisms, and applications, Case Stud. Constr. Mater. 19 (2023) e02312, https://doi.org/10.1016/j.cscm.2023.e02312.

8. N. P. Tran, T. N. Nguyen, T. D. Ngo, The role of organic polymer modifiers in cementitious systems towards durable and resilient infrastructures: a systematic review, Constr. Build. Mater. 360 (2022) 129562, https://doi.org/10.1016/j.conbuildmat.2022.129562.

9. Javadi A., Jamil T., Abouzari-Lotf, E., Soucek, M. D., & Heinz, H. (2021). Working mechanisms and design principles of comb-like polycarboxylate ether superplasticizers in cement hydration: quantitative insights for a series of well-defined copolymers. ACS Sustainable Chemistry & Engineering, 9(25), 8354–8371.

10. L. Xia, M. Zhou, T. Ni, Z. Liu. Synthesis and characterization of a novel early-strength polycarboxylate superplasticizer and its performances in cementitious system, J. Appl. Polym. Sci. 137 (2020) 48906.

11. X. Liu, G. Lai, J. Guan, S. Qian, Z. Wang, S. Cui, F. Gao, Y. Jiao, R. Tao, Technical optimization and life cycle assessment of environment-friendly superplasticizer for concrete engineering, Chemosphere 281 (2021), https://doi.org/10.1016/j.chemosphere.2021.130955.

12. Muthukumar, M., Mohan, D., 2004. Optimization of mechanical properties of concrete polymer and mix design recommendation based on design of experiments. J. Appl. Polym. Sci. 94(3), 1107–1116.

13. Khalid M. Y, Al Rashid A, Arif Z. U, Akram N, Arshad H, Garcia Marquez FP. Characterization of failure strain in fiber reinforced Composites: under on-Axis and off-Axis loading. Crystals 2021;11:216. https://doi.org/10.3390/cryst11020216.

14. Dobiszewska M, Schindler AK, Pichór W. Mechanical properties and interfacial transition zone microstructure of concrete with waste basalt powder addition. Constr Build Mater 2018;177:222–9. https://doi.org/10.1016/j.conbuildmat.2018.05.133 .

15. Peng Y, Zhang J, Liu J, Ke J, Wang F. Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume. Constr Build Mater 2015;101:482–7. https://doi.org/10.1016/j.conbuildmat.2015.10.046 .

16. Travush V. I., Karpenko N. I., Erofeev V. T., Vatin N. I., Erofeeva I. V., Maksimova I. N., Kondrashchenko V. I., Kesarijskij A. G. Destruction of powder-activated concrete with fixation of destruction by a laser interferometer // Magazine of Civil Engineering. Volume 95, Issue 3, 2020. – P. 42–48.

17. Saran, ASA, Magudeaswaran P, Mohammed MK. Concrete Microstructure- A Review, vol. 2; 2016.

18. Elsharief A, Cohen MD, Olek J. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cem Concr Res 2003;33:1837–49. https://doi.org/10.1016/S0008-8846(03)00205-9.

19. Xie Ping J. J, Beaudoin R. B. Effect of aggregate size on transition zone properties at the Portland cement paste interface. Cem Concr Res 1991. https://doi.org/10.1016/0008-8846(91)90059-Q .

20. Liao K. Y., Chang P. K., Peng Y. N., Yang C. C. A study on characteristics of interfacial transition zone in concrete. Cem Concr Res 2004;34:977–89. https://doi.org/10.1016/j.cemconres.2003.11.019 .

21. Neville A. M., Brooks J. J. Properties of concrete 2010. https://doi.org/10.4135/9781412975704.n88.

22. Erofeev V. T., Vatin N. I., Maximova I. N., Tarakanov O. V., Sanyagina Y. A., Erofeeva I. V., Suzdaltsev O. V. Powder-activated concrete with a granular surface texture // International journal for computational civil and structural engineering. – 2022. – No. 4. – T. 18. – P. 49–61.

23. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr Build Mater 2015;101:741–51. https://doi.org/10.1016/j.conbuildmat.2015.10.088

24. Tam C. M., Tam V. W. Y., Ng K. M. Optimal conditions for producing reactive powder concrete. Mag Concr Res 2010;62:701–16. https://doi.org/10.1680/macr.2010.62.10.701.

25. Hassan A. M. T, Jones S. W, Mahmud G. H. Experimental test methods to determine the uniaxial tensile and compressive behavior of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Constr Build Mater 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.030.

26. Chan Y. W., Chu S. H.. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cem Concr Res 2004;34:1167–72. https://doi.org/10.1016/j.cemconres.2003.12.023.

27. Kang S. T., Lee Y., Park Y. D., Kim J. K. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Compos Struct 2010. https://doi.org/10.1016/j.compstruct.2009.06.012.

28. Ma J., Orgass M., Dehn F., Schmidt Du, Tue N. V. Comparative investigations on ultra-high performance concrete with or without coarse aggregates. Proc Int Symp Ultra High Perform Concr 2004:205–12.

29. Zdeb T. An analysis of the steam curing and autoclaving process parameters for reactive powder concretes. Constr Build Mater 2017;131:758–66. https:// doi.org/10.1016/j.conbuildmat.2016.11.026 .

30. Rabinovich F. N. Dispersion-reinforced concrete. - Moscow: Stroyizdat, 1989. - 176 p.

31. Zhang, L., Zhang, M., Wang, K., Shi, J., Chen, W., Yan, K. Axial compressive behavior of steel-reinforced reactive powder concrete short columns (2022) Structures, 46, pp. 433-444.

32. Bu, L., Tang, D. Experimental Study and Numerical Analysis on Flexural Behavior of RC Beams Strengthened with RPC Reinforcement Mesh (2022) Shenyang Jianzhu Daxue Xuebao (ZiranKexue Ban)/Journal of Shenyang Jianzhu University (Natural Science), 38 (4), pp. 601-609.

33. Xu, S., Wu, P., Zhou, F., Li, Q., Zeng, T., Jiang, X. Experimental investigation and numerical prediction on resistance of reactive powder concrete to multiple penetration (2021) Baozha Yu Chongji / Explosion and Shock Waves, 41 (6), art. no. 063301.

34. Guo, M., Gao, R. Relationships among the characteristic tensile strain, curing age, and strength of reactive powder concrete (2021) Materials, 14 (10), art. no. 2660, .

35. Jia, F., He, K., Wang, W., An, M., Lu, Z. Splitting tensile bonding strength of Reactive Powder Concrete to normal concrete (2016) Tiedao Xuebao / Journal of the China Railway Society, 38 (3), pp. 127-132.

36. Cheng, J., Luo, X., Zhuang, Y., Xu, L., Luo, X. Experimental study on dynamic response characteristics of RPC and RC micro piles in SAJBs (2019) Applied Sciences (Switzerland), 9 (13), art. no. 2644, .

37. Ju, Y., Shen, H., Wang, D., Zheng, W. Experimental study on crack resistance of reactive powder concrete beam-column joints (2019) ZhongnanDaxueXuebao (ZiranKexue Ban)/Journal of Central South University (Science and Technology), 50 (5), pp. 1203-1209.

38. Cui, B., Wang, K.-K., Zhou, Q.-F., Deng, K.-L., Wei, L.-Y. Experiment on Static and Fatigue Performances of Assembled Concrete-steel Link in Assembled Composite Bridge Deck (2018) ZhongguoGongluXuebao/China Journal of Highway and Transport, 31(12), pp. 106-114.

39. Zhao, C., Wang, K., Zhou, Q., Deng, K., Cui, B. Full-Scale Test and Simulation on Flexural Behavior of Dovetail-Shaped Reactive Powder-Concrete Wet Joint in a Composite Deck System (2018) Journal of Bridge Engineering, 23 (8), art. no. 04018051.

40. Pan, W.-H., Fan, J.-S., Nie, J.-G., Hu, J.-H., Cui, J.-F. Experimental Study on Tensile Behavior of Wet Joints in a Prefabricated Composite Deck System Composed of Orthotropic Steel Deck and Ultrathin Reactive-Powder Concrete Layer (2016) Journal of Bridge Engineering, 21(10), art. no. 04016064.

41. Han, L.Z., Zhang, J.Q., Nie, J.G. Ultimate bearing capacity of steel-reactive powder concrete composite beams (2014) Advanced Materials Research, 900, pp. 473-482.

42. Zhang, Y., Yan, G., An, M., Zhong, T. Ultimate bearing capacity of steel-reactive powder concrete composite beams (2009) Beijing JiaotongDaxueXuebao/Journal of Beijing Jiaotong University, 33 (1), pp. 81-85.

43. Yan, R., Du, H., Xu, Y. Mechanical and thermal expansion properties of RPC with steel fibers after exposure to elevated temperatures (2018) Proceedings of the Annual International Conference on Architecture and Civil Engineering, 0.

44. Jin, L., He, P., Fu, Q., Chen, M. Relationship of macro cracks and microstructure of RPC component (2014) Jiangsu DaxueXuebao (ZiranKexue Ban)/Journal of Jiangsu University (Natural Science Edition), 35 (4), pp. 452-456 and 462.

45. Zhang, M., Zeng, B. Reliability-based calibration of material partial factor of prestressed reactive powder concrete members (2015) Tumu GongchengXuebao/China Civil Engineering Journal, 48, pp. 88-97.

46. Cao, X., Peng, J.-C., Jin, L.-Z. Experimental research on mechanical performance of prestressed RPC beam (2014) Wuhan LigongDaxueXuebao/Journal of Wuhan University of Technology, 36 (1), pp. 116-122.

47. Deng, Z., Chen, C., Chen, X. Experimental research on the shear behaviors of hybrid fiber reinforced RPC beams (2015) Tumu GongchengXuebao/China Civil Engineering Journal, 48 (5)

48. Deng, Z., Zhou, D., Cheng, S. The shear bear capacity of reactive powder concrete beam with high strength stirrup (2014) Harbin GongchengDaxueXuebao/Journal of Harbin Engineering University, 35 (12), pp. 1512-1518.

49. Ji, W., Zhou, C. Shear lag analysis of prestressed RPC box girder (2007) ZhongguoTiedaoKexue/China Railway Science, 28 (1), pp. 19-22.

50. He, F., Huang, Z.-Y., Yi, W.-J. Acid-resistance performance of reactive powder concrete (2011) Journal of Natural Disasters, 20 (2), pp. 44-49. 4922-21.

51. Yan, Z., Ji, W., An, M. Design of simple-supported reactive powder concrete railway bridge with a span of 32m (2011) Advanced Materials Research, 163-167, pp. 904-907.

52. Lu, S.-S., Zheng, W.-Z. Calculation method for cross-sectional crack resistance of reactive powder concrete beams reinforced with GFRP bars (2010) Harbin GongyeDaxueXuebao/Journal of Harbin Institute of Technology, 42 (4), pp. 536-540.

53. Yan, Z., Ji, W., An, M. Design and experimental study of low-height reactive powder concrete beams (2009) Tumu GongchengXuebao/China Civil Engineering Journal, 42 (5), pp. 96-102.

54. Yan, Z., Ji, W., An, M. Experimental study and full-range analysis of Reactive Powder Concrete T-beams (2009) Beijing JiaotongDaxueXuebao/Journal of Beijing Jiaotong University, 33 (1), pp. 86-90.

55. Panfilov, D. A. Review of existing concrete deformation diagrams under compression in domestic and foreign regulatory documents / D. A. Panfilov, A. A. Pishchulev, K. I. Gimadetdinov. - (Technical regulation). - Text: direct // Industrial and civil engineering. - 2014. - No. 3. - P. 80-84.

56. Bezgodov, I. M., Dmitrenko, E. N. Improvement of curvilinear concrete deformation diagrams // Industrial and civil engineering. 2019. No. 8. P. 99-104. DOI: 10.33622/0869-7019.2019.08.99-104.

57. Rakhmanov V. A., Safonov A. A. Development of experimental methods for assessing concrete deformation diagrams under compression // Academia. Architecture and Construction. - 2017. - No. 3. - P. 121-125.

58. Galustov K. Z. Nonlinear theory of concrete creep and calculation of reinforced concrete structures / K. Z. Galustov. - Moscow: Fizmatlit, 2006. - 248 p.

59. Maksimova I. N. Structure and structural strength of cement composites: monograph / I. N. Maksimova, N. I. Makridin, V. T. Erofeev, Yu. P. Skachkov // Moscow: ASV Publishing House, 2017. – 400 p.

60. Bragov A. M., Gonov M. E., Lomunov A. K., Balandin Vl. Vl. Experimental study of the dynamic properties of concrete under compressive load // Chapter 23 In: B. E. Abali and I. Giorgio (eds.), Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Advanced Structured Materials, 2020, vol 130. – P. 403–412.

61. Bragov A. M., Konstantinov A. Yu., Lamzin D. A., Lomunov A. K., Gonov M. E. Determination of the mechanical properties of concrete using the split Hopkinson pressure bar method // Procedia Structural Integrity 28 (2020) 2174–2180.

62. Bragov A. M., Gonov M. E., Lamzin D A., Lomunov A. K., Modin I. A. Response of fine-grained fiberreinforced concretes under dynamic compression // Materials Physics and Mechanics, 2021, 47(6) 962-967.

63. Gonov M., Bragov A., Konstantinov A., Lomunov A., Filippov A. Features of high-speed deformation and fracture of fine-grained concrete under tensile stress // Advanced Materials Modeling for Mechanical, Medical and Biological Applications. – 2021. – P. 193–211.

64. Gonov M. E., Bragov A. M., Konstantinov A. Y., Lomunov A. K., Filippov A. R. Features of High-Speed Deformation and Fracture of Fine-Grained Concrete Under Tensile Stress // Chapter 5. In: Altenbach H., Eremeyev V. A., Galybin A., Vasiliev A. (eds) Advanced Structured Materials, Advanced Materials Modeling for Mechanical, Medical and Biological Applications, vol 155. – 2022. – P. 193–211.

65. Varlamov A. A., Rimshin V. I. Models of Concrete Behavior. General Theory of Degradation. – Moscow: INFRA-M, 2019. – 436 p.

66. Pavluk A., Gomon S., Ziatiuk Y., Gomon P., Homon S., Kulakovskyi L., Iasnii V., Yasniy O., Imbirovych N. Stiffness of solid wood beams under direct and oblique bending conditions. Acta Facultatis Xylologiae Zvolen. – 2023. – 65(2). – P. 109–121.

67. Bakushev S. V. Approximation of strain diagrams by bilinear functions // Structural Mechanics and Analysis of Structures. – 2019. No. 2 (283). – P. 2–11.

68. Bakushev S. V. Approximation of strain diagrams by quadratic functions // Structural Mechanics and Analysis of Structures. – 2020. No. 3 (290). – P. 2–14.

69. Bertron A., Duchesne J. Attack of cementitious materials by organic acids in agricultural and agrofood effluents // RILEM State-of-the Art Reports. – 2013.

70. Vupputuri S., Fathepure B. Z., Wilber G. G. and 4 more. Isolation of a sulfur oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration // International Biodeterioration and Biodegradation. – 2015.

71. Dubravka B., Marijana S., Igor C. Review of microbial corrosion of concrete // Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society. – 2010.

72. Strokova V., Nelyubova V., Rykunova M. and 1 more, Strength and structure of cement stone exposed to domestic chicken coop // Journal of Physics: Conference Series. – 2019.

73. Lapcharatsangroj L., Chalida U.-T. Trial to Determine Durability and Serviceability for Swine Farm in Thailand // MATEC Web of Conferences. – 2018.

74. Barbhuiya S., Kumala D. Behavior of a sustainable concrete in acidic environment // Sustainability (Switzerland). – 2017.

75. Wei S., Jiang Z., Liu H. and 2 more. Microbiologically induced deterioration of concrete - A review // Brazilian Journal of Microbiology. – 2013.

76. Lanzón, M., García-Ruiz, P.A. Deterioration and damage evaluation of rendering mortars exposed to sulfuric acid // Materials and Structures / Materiaux et Constructions. – 2010,

77. Wei S., Sanchez M., Trejo D. and 1 more. Microbial mediated deterioration of reinforced concrete structures // International Biodeterioration and Biodegradation. – 2010.

78. De Belie N. Microorganisms versus stony materials: A love hate relationship // Materials and Structures / Materiaux et Constructions. – 2010.

79. Yousefi A., Allahverdi A., Hejazi P. Accelerated biodegradation of cured cement paste by Thiobacillus species under simulation condition // International Biodeterioration and Biodegradation. – 2014.

80. George R. P., Ramya S., Ramachandran D. and 1 more. Studies on Biodegradation of normal concrete surfaces by fungus Fusarium sp. // Cement and Concrete Research. – 2013.

81. Soleimani S., Ormeci B., Isgor O. B. Growth and characterization of Escherichia coli DH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD) // Applied Microbiology and Biotechnology. – 2013.

82. Li H., Liu D., Lian B. and 2 more. Microbial Diversity and Community Structure on Corroding Concrete // Geomicrobiology Journal. – 2012.

83. Fiertak M., Stanaszek-Tomal E., Kozak A. The growth of fungi and their effect on the behavior of cement polymer composites // Advances in Cement Research. – 2015.

84. Geweely N. S. I. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt // Biodegradation. – 2011.

85. Biological resistance of materials / V.I. Solomatov, V.T. Erofeev, V.F. Smirnov, et al. – Saransk: Publishing house of Mordovia University, 2001. – 193 p.

86. Pereyra A. M., Gonzalez M. R., Rodrigues T. A. and 2 more. Enhancement of biocorrosion resistance of epoxy coating by addition of Ag/Zn exchanged a zeolite // Surface and Coatings Technology. – 2015.

87. Munzer C., Belhaj E., Meylheuc T. and 2 more. Effects of bioadmixture on surface characteristics of cement pastes // Materiaux et Techniques. – 2015.

88. Vipulanandan C., Liu J. Polymer Coatings for Concrete Surfaces: Testing and Modeling // Handbook of Environmental Degradation of Materials: Second Edition. – 2012.

89. Viktoria Il’ina, Valeria Strokova, Vladimir Erofeev, Irina Stepina. Photo-reactive acrylic-alkyd composition with biocide additive for wood protection coating development // Architecture and Engineering Journal, Vol 9, No. 3, 2024. – P. 53–62.

90. Bezgodov, I.M. Improvement of curvilinear diagrams of concrete deformation / I.M. Bezgodov, E.N. Dmitrenko // Industrial and civil engineering. – 2019. – No. 8. – P. 99–104.

91. Chernousov, N.N. Study of the mechanics of fine-grained cinder concrete under axial tension and compression / N.N. Chernousov, R.N. Chernousov, A.V. Sukhanov // Construction materials. – 2014. – No. 12. – P. 59– 63.

92. Mailyan, D.R. Deformation properties and parametric points of frame concrete / D.R. Mailyan, G.V. Nesvetaev, S.V. Khalezin, A.A. Gortsevskoy // Electronic scientific journal "Engineering Bulletin of the Don". - 2018. - No. 2.


Review

For citations:


Erofeev V.T., Goncharova M.A., Tarakanov O.V., Svetlov D.A., Maximova I.N., Erofeeva I.V., Kuchin V.N., Svetlov D.V. Strength and Deformability of Biocidal Cement Composites. Building and Reconstruction. 2025;(6):99-122. (In Russ.) https://doi.org/10.33979/2073-7416-2025-122-6-99-122

Views: 107

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)