Porous filler based on metallurgical slag and liquid-glass composition
https://doi.org/10.33979/2073-7416-2025-121-5-132-141
Abstract
The relevance of developing composite construction materials based on natural bentonite from deposits in the Chechen Republic is substantiated. The nanoscale size of the modifier based on bentonite powder from the Chechen Republic deposit, in combination with the hyperplasticizer Frem Giper S-TB, was confirmed using modern technologies and equipment. The objective of this work is to investigate the role of the surface tension of bentonite suspensions, both individually and in combination with the hyperplasticizer Frem Giper S-TB, on the strength and density of cement stone, as well as their interdependence. The materials used were the hyperplasticizer Frem Giper S-TB (manufactured in the Republic of Belarus) and natural bentonite extracted in the Chechen Republic. For the experimental research, Portland cement CEM I 42.5 N produced by JSC «Chechencement» was used as the primary binder. A reduction in the water-cement ratio (W/C) by up to 24% was demonstrated. This was achieved by lowering the surface tension of the mixing water through the use of a complex nanomodifier based on natural raw materials. The use of this complex nanomodifier showed a significant reduction in surface tension, with a minimum identified at concentrations of 2-4% by mass of water. Minimum surface tension values of 40-41 mN/m were reached. It was established that the strength of the sample with the combined introduction of 0.4% Frem Giper S-TB and 0.4% bentonite powder increased by 22% compared to the control sample. A further increase in the concentration of both bentonite and the hyperplasticizer adversely affects the strength characteristics of the cement stone. This is a result of excessive dispersion of cement during the mixing process with modified low-surface-tension water, and a decrease in the density of the cement paste due to the separation of cement grains by the formed micelles of the Frem Giper S-TB hyperplasticizer.
About the Authors
A. M. AbdullaevRussian Federation
Abdullaev Abukhan M., Researcher
Grozny
S.-A. Yu. Murtazaev
Russian Federation
Murtazaev Sayd-Alvi Y., Doctor of Technical Sciences, Professor, Head of the Department "Technology of Construction Production"
Grozny
M. A.-V. Abdullaev
Russian Federation
Abdullaev Magomed Abdul-Vakhabovich, Researcher
Grozny
M. S. Saidumov
Russian Federation
Saidumov Magomed S., candidate in tech. sc., docent of the Department of "Technology of Construction Production"
Grozny
R. M. Abdullaev
Russian Federation
Abdullaev Ramzan M., postgraduate student
Grozny
References
1. Rebinder P.A. Poverhnostnye yavleniya v dispersnyh sistemah [Surface phenomena in dispersed systems] Physico-chemical mechanics. Moscow: Nauka Publ., 1979, pp. 246-250 (rus).
2. Danilov V.E., Aisenstadt A.M., Korolev E.V., Shamanina A.V., Garamov G.A. Metodicheskie aspekty opredeleniya poverhnostnogo natyazheniya mineral'nyh poroshkovyh sistem s ispol'zovaniem kompaktov [Methodological aspects of determining the surface tension of mineral powder systems using compacts] Physics and Chemistry of materials processing. 2024. No. 4. pp. 47-64 (rus).
3. Danilov V.E., Korolev E.V., Aisenstadt A.M., Strokova V.V. Osobennosti rascheta svobodnoj energii poverhnosti na osnove modeli mezhfaznogo vzaimodejstviya Ounsa-Vendta-Rabelya-K'el'ble [Features of calculating the free energy of a surface based on the Oons-Wendt-Rabel-Kjellbl interfacial interaction model] Building materials. 2019. No. 11. pp. 66-72. DOI: 10.31659/0585-430X-2019-776-11-66-72 (rus).
4. Abdullaev R.M., Abdullaev A.M., Abdullaev M.A.V. Nanoporoshok i ego vliyanie na fizikomekhanicheskie svojstva cementnogo kamnya [Nanopowder and its effect on the physico-mechanical properties of cement stone] News of higher educational institutions. Construction. 2022. No. 7 (763). pp. 59-67 (rus).
5. Korolev E.V., Grishina A.N., Inozemtcev A.S., Ayzenshtadt A.M. Study of the kinetics structure formation of cement dispersed systems. Part II. Nanotechnologies in Construction. 2022; 14(4): 263–273. https://doi.org/10.15828/2075-8545-2022-14-4-263-274.
6. Zhegera K.V., Lavrov I.Yu., Troshchev D.V. Optimizaciya sinteza nanostrukturiruyushchej dobavki dlya primeneniya v rabochej smesi 3D-printera [Optimization of the synthesis of a nanostructuring additive for use in the working mixture of a 3D printer]. Regional architecture and construction. 2024; 2(59):60-65. DOI: 10.54734/20722958 (rus).
7. Zhegera K.V., Dasaeva N.A. Разработка состава бетонной смеси с применением наноструктурирующей добавки для 3d-печати малых архитектурных форм [Development of the composition of a concrete mixture using a nanostructuring additive for 3D printing of small architectural forms] Nanotechnology in construction: scientific online journal. 2025. Vol. 17. No. 1. pp. 14-22 (rus).
8. Kozlova I.V., Dudareva M.O. Varianty vvedeniya tonkodispersnoj dobavki na osnove si-stemy TIO2- BI2O3 v cementnye kompozicii [Options for introducing a finely dispersed additive based on the TIO2-BI2O3 system into cement compositions] Nanotechnology in construction: scientific online journal. 2024. Vol. 16. No. 2. pp. 90-99 (rus).
9. Dadashev R.H., Dzhambulatov R.S., Elimkhanov D.Z., Dadashev I.N. etodika izmereniya poverhnostnogo natyazheniya suspenzii bentonitov [Method of measuring the surface tension of bentonite suspension] Journal of Physical Chemistry. 2020. Vol. 94. No. 7. pp. 1114-1118 (rus).
10. Abdullaev M.A.V., Abdullaev A.M., Abdullaev R.M. Vysokoprochnye melkozernistye betony na osnove kompleksnoj nanodobavki [High-strength fine-grained concretes based on complex nano-additives] News of higher educational institutions. Construction. 2024. No. 6 (786). pp. 78-93 (rus).
11. Dadashev R.Kh., Mezhidov V.Kh., Dzhambulatov R.S., Elimkhanov D.Z. O prirode osobennostej izoterm poverhnostnogo natyazheniya vodnyh suspenzij bentonitov [On the nature of the surface tension isotherms of aqueous bentonite suspensions] Proceedings of the Russian Academy of Sciences. The series is physical. 2014. Vol. 78. No. 4. P. 433. (rus).
12. Frolov Yu.G. Kurs kolloidnoj himii [Course of colloidal chemistry. Surface phenomena and dispersed systems]. 1982. 400 p. (rus).
13. Panin V.E., Deryugin E.E., Kulkov S.N. Mezomekhanika uprochneniya materialov nanodis-persnymi vklyucheniyami [Mesomechanics of hardening materials with nanodisperse inclusions] Applied Mechanics and Technical Physics, 2010. No. 4, pp. 127-142. (rus).
14. Starchenko S.A., Poluektova V.A., Shapovalov N.A., Kozhanova E.P. Poluchenie kompleksnoj organomineral'noj dobavki na osnove floroglyucinfurfurol'nogo oligomera i nanochastic dioksida kremniya [Obtaining complex organomineral additives based on phloroglucinifurfural oligomer and silicon dioxide nanoparticles] Nanotechnology in construction: scientific online journal. 2024. Vol. 16. No. 5. pp. 447-462. (rus).
15. Pukharenko Yu.V., Aubakirova I.U., Hirkhasova V.I. Cellyuloza v betone: novoe napravlenie razvitiya stroitel'noj nanotekhnologii [Cellulose in concrete: a new direction in the development of construction nanotechnology] Building materials. 2020. No. 7. pp. 39-44. -DOI: 10.31659/0585-430X-2020-782-7-39-44(rus).
16. Korolev E.V., Grishina A.N., Danilov A.M., Aisenstadt A.M. Sistemnyj analiz evolyucii znanij o strukturoobrazovanii stroitel'nyh materialov [A systematic analysis of the evolution of knowledge about the structure formation of building materials] Industrial and civil engineering. 2024. No. 9. pp. 18-27. (rus).
17. Smirnov A.N. Opredelenie izoterm poverhnostnogo natyazheniya granic zeren na osnove adsorbcionnyh izmerenij [Determination of surface tension isotherms of grain boundaries based on adsorption measurements] Surface. X-ray, synchrotron and Neutron Research, 2005. No. 5. pp. 93-96. (rus).
18. Shchukin E.D., Pertsov A.V., Amelina E.A. Kolloidnaya himiya [Colloidal Chemistry]. Moscow: Moscow University Press, 1982. 348 p. (rus).
19. Deryagin B.V. Teoriya ustojchivosti kolloidov i tonkih plyonok [Theory of stability of colloids and thin films]. Moscow: Nauka Publ., 1986 (rus).
Review
For citations:
Abdullaev A.M., Murtazaev S.Yu., Abdullaev M.A., Saidumov M.S., Abdullaev R.M. Porous filler based on metallurgical slag and liquid-glass composition. Building and Reconstruction. 2025;(5):132-141. (In Russ.) https://doi.org/10.33979/2073-7416-2025-121-5-132-141
JATS XML





















