Preview

Building and Reconstruction

Advanced search

A practical calculation method for the normal section of corrosion-damaged columns under transverse impact

https://doi.org/10.33979/2073-7416-2025-121-5-57-72

Abstract

The issues of the robustness of load-bearing structures under technogenic emergency impacts are currently becoming increasingly relevant in both domestic and global structural engineering. This is particularly true for compressed and compression-bent elements, including building columns. Buildings with a significant service life accumulate corrosion damage, which leads to local degradation of the mechanical properties of materials. This can substantially affect the ultimate load-bearing capacity and overall robustness of structural systems under dynamic loads. An approach is being developed to determine the strength of normal sections for eccentrically compressed columns with a small initial eccentricity under transverse impact. Corrosion is considered as a localized "spot" defect, within which the mechanical properties of both concrete and reinforcement may be degraded. The degree of degradation of the materials' mechanical properties is determined from experimental data obtained using accelerated corrosion schemes. Depending on the degree of corrosion, the effect of confinement on concrete deformations in the direction perpendicular to compression is taken into account. A verification comparison of the developed methodology with experimental data from dynamic tests of columns under transverse impact is provided. A calculation example for a corrosion-damaged column is considered.

About the Authors

A. V. Alekseytsev
National Research Moscow State University of Civil Engineering
Russian Federation

Alekseytsev Anatoliy V., Doctor of Engineering, Prof. of Department "Reinforced concrete and stone structures" 

Moscow 

Ph.: 8(495)287-49-14 доб. 3059 



K. V. Yurusov
National Research Moscow State University of Civil Engineering
Russian Federation

Yurusov Konstantin V., post-graduate student of department "Reinforced concrete and stone structures" 

Moscow 



References

1. Tamrazyan A. The Bearing Capacity of Compressed Corrosion-Damaged Reinforced Concrete Elements under Lateral Pulse Loading. Buildings. 2023;13:2133. https://doi.org/10.3390/buildings13092133

2. Kolchunov V.I., Fedorova N.V., Savin S.Yu. Dinamicheskiye effekty v staticheski neopredelimykh fizicheskikh i konstruktivno nelineynykh tekhnologiyakh [Dynamic effects in statically indeterminate physically and structurally nonlinear systems]. Promyshlennoye i grazhdanskoye stroitel'stvo. 2022;(9):42-51. doi: 10.33622/0869-7019. (rus)

3. Tamrazyan A.G. Ustalostnoye povedeniye gibkikh zhelezobetonnykh balok pri montazhe [Fatigue behavior of bending reinforced concrete beams under corrosion]. Zhelezobetonnyye konstruktsii. 2024;6(2):22-34. (rus)

4. Bondarenko V.M. Korrozionnyye povrezhdeniya kak prichina lavinnogo razrusheniya zhelezobetonnykh konstruktsiy [Corrosion damage as a cause of avalanche failure of reinforced concrete structures]. Stroitel'naya mekhanika i raschet sooruzheniy. 2009;5(226):13-17. (rus)

5. Kudryavtsev M.V., Tamrazyan A.G. Metodika opredeleniya nesushchey sposobnosti korrozionnopovrezhdonnykh kolonn pri seysmicheskikh vozdeystviyakh [Methodology for Determining the Bearing Capacity of Corrosion-Damaged Columns under Seismic Impacts]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2024;24(1):20-27. (rus)

6. Tamrazyan A.G. Nesushchestvennaya zheleznaya sposobnost' korrozionno-povrezhdennykh izgibayemykh elementov, sootvetstvuyushchikh trebovaniyam ognevogo vozdeystviya [Bearing Capacity of CorrosionDamaged Bendable Reinforced Concrete Elements Subjected to Fire Exposure]. Academia. Arkhitektura i stroitel'stvo. 2022;(4):130-137. (rus)

7. Sun J.-M., Yi W.-J., Chen H., Peng F., Zhou Y., Zhang W.-X. Dynamic Responses of RC Columns under Axial Load and Lateral Impact. Journal of Structural Engineering. 2023;149(1). DOI:10.1061/jsendh/steng-11612.

8. Zhang W.-P., Chen J.-P., Yu Q.-Q., Gu X.-L. Corrosion evolution of steel bars in RC structures based on Markov chain modeling. Structural Safety. 2021;88. DOI:10.1016/j.strusafe.2020.102037.

9. Zhao W., Qian J. Resistance mechanism and reliability analysis of reinforced concrete columns subjected to lateral impact. International Journal of Impact Engineering. 2020;136. DOI:10.1016/j.ijimpeng.2019.103413.

10. Puzankov Yu.I. Prochnost' i deformativnost' szhatykh zhelezobetonnykh elementov pri poperechnoy dinamicheskoy nagruzke [Strength and deformability of compressed reinforced concrete elements under transverse dynamic loading]: PhD thesis. Moscow: Moscow Order of the Red Banner of Labor Civil Engineering Institute named after V.V. Kuybyshev, 1979. (rus)

11. Daneshvar K., Moradi M.J., Ahmadi K., Hajiloo H. Strengthening of corroded reinforced concrete slabs under multi-impact loading: Experimental results and numerical analysis. Construction and Building Materials. 2021;284. DOI:10.1016/j.conbuildmat.2021.122650.

12. He S., Cao Z., Ma J., Zeng S., Li P., Wang H. Influence of Corrosion and Fatigue on the Bending Performances of Damaged Concrete Beams. Advances in Civil Engineering. 2021;2021. DOI:10.1155/2021/6693224.

13. Bondarenko V.M. Osobennosti silovogo soprotivleniya povrezhdennykh korroziyey zhelezobetonnykh elementov znakoperemennomu nagruzheniyu [Features of the force resistance of corrosion-damaged reinforced concrete elements to alternating loading]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2011;(1):30-38. (rus)

14. Smolyago G.A., Dronov A.V., Frolov N.V. Modelirovaniye velichiny korrozionnykh povrezhdeniy armatury zhelezobetonnykh konstruktsiy v usloviyakh khloridnoy agressivnoy sredy [Modeling the magnitude of corrosion damage to the reinforcement of reinforced concrete structures in an aggressive chloride environment]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2017;1(70):43-49. (rus)

15. Yu X.-H., Dai K.-Y., Li Y.-S. Variability in corrosion damage models and its effect on seismic collapse fragility of aging reinforced concrete frames. Construction and Building Materials. 2021;295. DOI:10.1016/j.conbuildmat.2021.123654.

16. Fernandez I., Bairán J.M., Marí A.R. Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ–ε behavior. Construction and Building Materials. 2015;101:772–783. DOI:10.1016/j.conbuildmat.2015.10.139.

17. Aminulai H.O., Robinson A.F., Ferguson N.S., Kashani M.M. Nonlinear behaviour of corrosion damaged low-strength short reinforced concrete columns under compressive axial cyclic loading. Engineering Structures. 2023;289:116245. DOI:10.1016/j.engstruct.2023.116245.

18. Alekseytsev A.V., Antonov M.D. Dinamika bezbalochnykh zhelezobetonnykh karkasov sooruzheniy pri povrezhdeniyakh plit prodavlivaniyem [Dynamics of beam-free reinforced concrete frames of structures with slab damage due to punching]. Stroitel'stvo i rekonstruktsiya. 2021;4(96):23-34. (rus)

19. Klueva N., Emelyanov S., Kolchunov V., Gubanova M. Criterion of Crack Resistance of Corrosion Damaged Concrete in Plane Stress State. Procedia Engineering. 2015;117(1):179–185. DOI:10.1016/j.proeng.2015.08.144.

20. Nasser H., Van Steen C., Vandewalle L., Verstrynge E. An experimental assessment of corrosion damage and bending capacity reduction of singly reinforced concrete beams subjected to accelerated corrosion. Construction and Building Materials. 2021;286. DOI:10.1016/j.conbuildmat.2021.122773.

21. Alekseytsev A.V., Yurusov K.V. Issledovaniye nesushchey sposobnosti korrozionnopovrezhdayemykh szhatykh zhelezobetonnykh elementov pri poperechnom deystvii impul'snoy nagruzki [Study of the bearing capacity of corrosion-damaged compressed reinforced concrete elements under transverse impulse load]. Vestnik MGSU. 2025;20(5):667-682. (rus)

22. Yu X., Robuschi S., Fernandez I., Lundgren K. Numerical assessment of bond-slip relationships for naturally corroded plain reinforcement bars in concrete beams. Engineering Structures. 2021;239. DOI:10.1016/j.engstruct.2021.112309.

23. Chen S., Duffield C., Miramini S., Raja B.N.K., Zhang L. Life-cycle modelling of concrete cracking and reinforcement corrosion in concrete bridges: A case study. Engineering Structures. 2021;237. DOI:10.1016/j.engstruct.2021.112143.

24. Luo Y., Zheng H., Zhang H., Liu Y. Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation. Advances in Structural Engineering. DOI:10.1177/13694332211017995.

25. Savin S.Yu., Kolchunov V.I., Fedorova N.V. Nesushchaya sposobnost' zhelezobetonnykh vnetsentrenno szhatykh elementov karkasov zdaniy pri korrozionnykh povrezhdeniyakh v usloviyakh osobykh vozdeystviy [Bearing capacity of reinforced concrete eccentrically compressed elements of building frames under corrosion damage under special influences]. Zhelezobetonnyye konstruktsii. 2023;1(1):46-54. (rus)

26. Bojorquez J., Ponce S., Ruiz S.E., Bojorquez E., Reyes-Salazar A., Barraza M., Chavez R., Valenzuela F., Leyva H., Baca V. Structural reliability of reinforced concrete buildings under earthquakes and corrosion effects. Engineering Structures. 2021;237. DOI:10.1016/j.engstruct.2021.112161.

27. Serpik I.N., Kurchenko N.S., Alekseytsev A.V., Lagutina A.A. Analiz v geometricheski, fizicheski i konstruktivno nelineynoy postanovke dinamicheskogo povedeniya ploskikh ram pri zaproyektnykh vozdeystviyakh [Analysis of the dynamic behavior of flat frames under beyond-design-basis loads in a geometrically, physically, and structurally nonlinear formulation]. Promyshlennoye i grazhdanskoye stroitel'stvo. 2012;(10):49-51. (rus)

28. Zhao W., Ye J. Dynamic behavior and damage assessment of RC columns subjected to lateral soft impact. Engineering Structures. 2022;251. DOI:10.1016/j.engstruct.2021.113476.

29. Daneshvar K., Moradi M.J., Ahmadi K., Mahdavi G., Hariri-Ardebili M.A. Dynamic behavior of corroded RC slabs with macro-level stochastic finite element simulations. Engineering Structures. 2021;239. DOI:10.1016/j.engstruct.2021.112056.

30. Fu C., Fang D., Ye H., Huang L., Wang J. Bond degradation of non-uniformly corroded steel rebars in concrete. Engineering Structures. 2021;226. DOI:10.1016/j.engstruct.2020.111392.

31. Kurchenko N.S., Grishkov V.A. K otsenke zhestkosti korrozionno-povrezhdayemykh zhelezobetonnykh balok [On the assessment of the rigidity of corrosion-damaged reinforced concrete beams]. Inzhenernyy vestnik Dona. 2022;9(93):112-123. (rus)


Review

For citations:


Alekseytsev A.V., Yurusov K.V. A practical calculation method for the normal section of corrosion-damaged columns under transverse impact. Building and Reconstruction. 2025;(5):57-72. (In Russ.) https://doi.org/10.33979/2073-7416-2025-121-5-57-72

Views: 117

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)