Preview

Building and Reconstruction

Advanced search

Modeling of heat transfer processes in concreting of massive reinforced concrete structures

https://doi.org/10.33979/2073-7416-2025-120-4-120-130

Abstract

Massive reinforced concrete structures – foundations, walls, floors, crossbars, bridge support bodies, dams – are subject to significant temperature deformations due to concrete exothermy and external thermal effects. Uneven temperature distribution over the structure leads to the occurrence of temperature stresses, which can cause cracking in concrete and lead to a decrease in the durability of the structure. Thermophysical modeling makes it possible to predict with a high degree of probability the temperature fields of structures under construction and stresses at the design stage, optimizing concreting technologies (the rate of turnover of the formwork, heat treatment, the composition of the concrete mixture, etc.).

 The methodological basis of the research consists of the theory of unsteady nonlinear heat and mass transfer, approaches of mechanics of deformable solids, which allow modeling the stress-strain state of massive structures, taking into account the associated thermal, phase and chemical processes. When concrete hardens, an exothermic reaction of cement hydration occurs, accompanied by the release of heat. In massive structures, due to the low thermal conductivity of concrete, heat accumulates, which leads to: uneven heating; temperature deformations (expansion during heating and compression during cooling); stress due to limited freedom of deformation. Modeling of heat transfer processes makes it possible to predict temperature fields and stresses, optimize concreting technologies, and prevent structural failure. Modern computational methods ensure high accuracy of calculations, which is especially important for critical structures (dams, bridges, foundations of nuclear power plants).

About the Authors

S. V. Fedosov
Federal State Budgetary Educational Institution of Higher Education "National Research Moscow State University of Civil Engineering"
Russian Federation

Fedosov Sergey V. - Academician of the Russian Academy of Architecture and Construction Sciences (RAACS), doctor in tech. sc., prof., prof. of the dep. of Technology and Organization of Construction Production

 Moscow



I. S. Pulyaev
Moscow Polytechnic University
Russian Federation

Pulyaev Ivan S. - candidate in tech. sc., docent, Head of the dep. of Industrial, Civil and Underground Construction

 Moscow



O. V. Aleksandrova
Federal State Budgetary Educational Institution of Higher Education "National Research Moscow State University of Civil Engineering"
Russian Federation

Aleksandrova Olga V. - candidate in tech. sc., docent, Associate Prof. of the dep. of Technology and Organization of Construction Production

 Moscow



A. N. Mityagina
Moscow Polytechnic University
Russian Federation

Mityagina Anastasia N. - postgraduate student of the dep. of Industrial, Civil and Underground Construction

 Moscow



References

1. Smirnov N.V., Antonov E.A. The role of concrete creep in the formation of the thermally stressed state of monolithic reinforced concrete structures during its construction [Rol polzuchesti betona v formirovanii termonapryazhennogo sostoyaniya monolitnykh zhelezobetonnykh konstruktsiy v protsesse eye vozvedeniya]. Scientific works of JSC TSNIIS "From hydraulic integrator to modern computers". 2005. No. 213. Pp. 89-117. (rus)

2. Evlanov S.F. Technological cracks on the surface of monolithic superstructures [Tekhnologicheskiye treshchiny na poverkhnosti monolitnykh proletnykh stroyeniy]. Scientific papers of JSC TSNIIS "Problems of rationing and research of consumer properties of bridges". 2002. No. 208. Pp. 27-36. (rus)

3. Vasiliev A.I., Weizman S.G. Modern trends and problems of domestic bridge construction. Scientific and technical journal [Sovremennyye tendentsii i problemy otechestvennogo mostostroyeniya]. Bulletin of Bridge Construction”. 2015.No. 1. Pp. 2–17. (rus)

4. Solovyanchik A.R., Shifrin S.A., Ilyin A.A., Sokolov S.B. Selection of technological parameters for the production of concrete work during the construction of massive grillages and supports of the arched pylon of a cable stayed bridge across the Moscow River [Vybor tekhnologicheskikh parametrov proizvodstva betonnykh rabot pri vozvedenii massivnykh rostverkov i opor arochnogo pilona vantovogo mosta cherez reku Moskvu]. Scientific works of JSC TsNIIS “Research of transport structures”. 200. No. 230. Pp.24–30. (rus)

5. Gakhova, L.N. Temperature stresses in arrays of reinforced concrete structures [Температурные напряжения в массивах железобетонных конструкций]. Fundamental and applied issues of mining sciences. 2017. No. 4(3). Pp. 48-53. (rus). http://jfams.ru/index.php/JFAMS/article/view/116

6. Pulyaev I.S., Aleksandrova O.V., Pulyaev S.M., Kuritsyn V.S. Justification of the size of concreting blocks during the construction of tunnel structures and retaining walls of bridge structures [Obosnovaniye razmerov blokov betonirovaniya pri vozvedenii tonnelnykh sooruzheniy i podpornykh sten mostovykh konstruktsiy]. Bulletin of VSGUT. 2023. No. 4 (91). Pp. 56-64. (rus)

7. GOST 27751-2014 Nadezhnost stroitelnykh konstruktsiy in osnovaniy [GOST 27751-2014 Nadezhnost stroitelnykh konstruktsiy i osnovaniy]. (rus)

8. SP 46.13330.2012 Mosty i truby [SP 46.13330.2012 Mosty i truby]. (rus).

9. SP 63.13330.2018 Betonnyye i zhelezobetonnyye konstruktsii. [SP 63.13330.2018 Betonnyye i zhelezobetonnyye konstruktsii]. (rus)

10. Solovyanchik A.R., Korotin V.N., Shifrin S.A., Weizman S.G. Experience in reducing cracking in concrete from temperature influences during the construction of the Gagarin tunnel [Opyt snizheniya treshchinoobrazovaniya v betone ot temperaturnykh vozdeystviy pri sooruzhenii Gagarinskogo tonnelya]. Scientific and technical journal “Bulletin of Bridge Construction”. 2002 No. 3(4). Pp. 53–59. (rus)

11. Velichko V.P., Cherny K.D Accounting for the stress-strain state in prefabricated monolithic bridge supports at the stage of their construction [Uchet napryazhenno-deformirovannogo sostoyaniya v sborno-monolitnykh oporakh mostov na stadii ikh sooruzheniya]. Scientific and technical journal “Transport Construction”. 2013. No 2. Pp. 11–13. (rus)

12. Bazhenov Yu.M. Technology of concrete [Tekhnologiya betona]. Moscow : Publishing house of the DIA. 2015. 528 p. (rus)

13. Lapidus A.A., Hubaev A.O., Abidov T.Kh., Topchiy D.V. Improvement of the concreting process of monolithic structures in the Arctic zone [Sovershenstvovaniye protsessa betonirovaniya monolitnykh konstruktsiy v usloviyakh arkticheskoy zony]. Industrial and civil engineering. 2024. No. 12. Pp. 9-16. DOI:10.33622/0869-7019.2024.12.09-16. (rus)

14. Passek V.V., Solovyanchik A.R. Methodology for studying the temperature regime of bridge span beams during heat and moisture treatment [Metodika issledovaniy temperaturnogo rezhima balok proletnykh stroyeniy mostov v protsesse teplovlazhnostnoy obrabotki]. Collection of scientific papers of TSNIIS "Temperature regime and issues of increasing the stability and durability of transport structures at BAM". 1980. Pp. 97-103. (rus)

15. Sokolov S.B. The influence of air temperature fluctuations in greenhouses on the temperature of hardening concrete during the construction of monolithic slab-ribbed span structures in the cold season Vliyaniye kolebaniy temperatury vozdukha v teplyakakh na temperaturu tverdeyushchego betona pri vozvedenii monolitnykh plitno rebristykh proletnykh stroyeniy v kholodnyy period goda]. Scientific works of OJSC TsNIIS “From hydraulic integrator to modern computers”. 2002. No. 213. Pp.167–172. (rus)

16. Smirnov N.V., Antonov E.A. The role of concrete creep in the formation of the thermally stressed state of monolithic reinforced concrete structures during its construction [Rol polzuchesti betona v formirovanii termonapryazhennogo sostoyaniya monolitnykh zhelezobetonnykh konstruktsiy v protsesse eye vozvedeniya]. Scientific works of JSC TSNIIS "From hydraulic integrator to modern computers". 2005. No. 213. Pp. 89-117. (rus)

17. Shifrin S.A., Tkachev A.V. Thermal interaction of hardening concrete and concrete base in conditions of solar radiation [Rol polzuchesti betona v formirovanii termonapryazhennogo sostoyaniya monolitnykh zhelezobetonnykh konstruktsiy v protsesse eye vozvedeniya]. Proceedings of VNIIPITeploproekt. 1985. Pp. 19-27. (rus)

18. Lukyanov V.S., Solovyanchik A.R. Physical basis for predicting the own thermally stressed state of concrete and reinforced concrete structures [Fizicheskiye osnovy prognozirovaniya sobstvennogo termonapryazhennogo sostoyaniya betonnykh i zhelezobetonnykh konstruktsiy]. Collection of scientific works of TsNIIS. 1972. No. 73. Pp. 36-42. (rus)

19. Velichko V.P., Tsimerinov A.I. Methodology for predicting the thermally stressed state of cylindrical concrete massifs Metodika prognozirovaniya termonapryazhennogo sostoyaniya tsilindricheskikh betonnykh massivov]. Collection of scientific papers of TSNIIS. 1972. No. 73. Pp. 117-129. (rus)

20. Ginzburg A.V. Ensuring high quality and efficiency of work during the construction of tunnels made of monolithic concrete. Scientific and technical journal [Obespecheniye vysokogo kachestva i effektivnosti rabot pri vozvedenii tonneley iz monolitnogo betona]. “Bulletin of MGSU”. 2014. No. 1. Pp. 98–110. (rus)

21. Nesvetaev, G.V., Koryanova, Yu.I., Yazyev, B.M. Autogenous shrinkage and early cracking of massive foundation slabs. Maazine of Civil Engineering. 2024. № 17(6). Article No. 13005. DOI: 10.34910/MCE.130.5

22. Nesvetaev G.V., Koryanova Yu.I., Shut V.V. Taking into account the influence of additives on the heat dissipation of concrete in order to prevent early cracking of massive monolithic structures [Uchet vliyaniya dobavok na teplovydeleniye betona s tselyu predotvrashcheniya rannego reshchinoobrazovaniya massivnykh monolitnykh konstruktsiy]. The Eurasian Scientific Journal. 2024. Vol. 16. No. 6: 50SAVN624. (rus). Available at: https://esj.today/PDF/50SAVN624.pdf

23. Pulyaev I.S., Pulyaev S.M. Consideration of the temperature factor of hardening concrete during the construction of transport infrastructure facilities [Uchet temperaturnogo faktora tverdeyushchego betona pri vozvedenii obyektov transportnoy infrastruktury]. Bulletin of VSGUT. 2020. No. 4 (79). Pp. 92-100. (rus)

24. Pulyaev I.S., Pulyaev S.M. Accounting for the intrinsic thermally stressed state of hardening concrete while ensuring the required consumer properties of the Crimean bridge structures [Uchet sobstvennogo termonapryazhennogo sostoyaniya tverdeyushchego betona pri obespechenii trebuyemykh potrebitelskikh svoystv konstruktsiy krymskogo mosta]. Bulletin of the Siberian State Automobile and Road University. 2018. Vol. 15.No. 5 (63). Pp. 742-759. (rus)

25. Travush V.I., Nikiforov S.V. Technology of concreting massive structures of the foundations of the Lakhta Center multifunctional complex [Tekhnologiya betonirovaniya massivnykh konstruktsiy fundamentov zdaniy MFK «Lakhta Tsentr»]. Building and Reconstruction. 2025. No. 2. Pp. 44-55. (rus.) https://doi.org/10.33979/2073-7416-2025-118-2-44-55

26. Eliseev V.V. Mechanics of a deformable solid [Mekhanika deformiruemogo tvyordogo tela.]. S.-P(b), 2006, 231 p. (rus)

27. Fedosov S., Pulyaev I., Aleksandrova O., Cherednichenko N., Derbasova E., Lezhnina Yu. Thermophysical processes in hardening concrete as a factor for quality assurance of erected reinforced concrete structures of transport facilities. Architecture and Engineering. 2024. Vol. 9. No. 4. Pp. 75-86.

28. Vasiliev A.I., Veitsman S.G. Modern trends and problems of domestic bridge construction [Sovremennyye tendentsii i problemy otechestvennogo mostostroyeniya]. Scientific and technical journal "Bulletin of Bridge Engineering". 2015. No. 1. Pp. 2-17. (rus)

29. Balyuchik E.A., Cherny K.D. Increasing the crack resistance of monolithic concrete bridge supports by constructive methods [Povysheniye treshchinostoykosti opor mostov iz monolitnogo betona konstruktivnymi metodami]. Collection of scientific papers of TSNIIS. 2010. No. 257. Pp. 49-57. (rus)

30. Lykov A.V., Mikhailov Yu.A. Theory of heat and mass transfer [Teoriya teplo- i massoperenosa]. Moscow: Gosenergoizdat. 1963, 536 p. (rus)

31. Fedosov S.V., Bakanov M.O., Fedoseev V.N. Methods of the theory of thermal conductivity in application to the problems of modeling the processes of drying and heat treatment of solid materials [Metody teorii teploprovodnosti v prilozhenii k zadacham modelirovaniya protsessov sushki i termicheskoy obrabotki tverdykh materialov]. Moscow - Vologda, Infra-Engineering, 2024, 212 p. (rus)

32. Lykov A.V. Theoretical foundations of building thermophysics [Teoreticheskiye osnovy stroitelnoy teplofiziki]. Publishing House of the Academy of Sciences of the BSSR,1961, 525 p. (rus)


Review

For citations:


Fedosov S.V., Pulyaev I.S., Aleksandrova O.V., Mityagina A.N. Modeling of heat transfer processes in concreting of massive reinforced concrete structures. Building and Reconstruction. 2025;(4):120-130. (In Russ.) https://doi.org/10.33979/2073-7416-2025-120-4-120-130

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)