Experimental research methodology for punching shear strength of thick reinforced concrete slabs
https://doi.org/10.33979/2073-7416-2025-120-4-22-38
Abstract
This article examines methodological approaches for experimental studies of loadbearing behavior in thick reinforced concrete slabs (without shear reinforcement) with varying tensile zone reinforcement characteristics. A critical analysis of regulatory standards (SP 63.13330, Eurocode 2, ACI 318, Model Code 2020) reveals their inconsistency with experimental data when the shear spanto-effective depth ratio is ≤2.0. Through comparative analysis of domestic and international research practices and numerical simulations, the study establishes justification for test specimen parameters to investigate strength, crack formation, and failure mechanisms under punching shear. The developed loading methodology ensures punching effect generation in the support zone, complemented by comprehensive stress-strain monitoring techniques during incremental loading stages.
Keywords
About the Authors
O. V. KabantsevRussian Federation
Kabantsev Oleg V. - Dr. Sci. (Engineering), Director of Scientific and Technical Projects, Professor of the Department of Reinforced Concrete and Stone Structures
Moscow
S. V. Krylov
Russian Federation
Krylov Sergey B. - Dr. Sci. (Engineering), Academician of the RAACS, Head of the Laboratory of Reinforced Concrete Mechanics
Moscow
S. V. Trofimov
Russian Federation
Trofimov Sergey V. -Postgraduate Student of the Department of Reinforced Concrete and Stone Structures; Researcher at the Laboratory of Reinforced Concrete Mechanics
Moscow
References
1. Korovin N.N., Golubev A.Yu. Punching of thick reinforced concrete slabs. Beton i zhelezobeton. 1989. No. 11. Pp. 20-23. (rus)
2. Kang S.M., Na S.J., Hwang H.J. Two-way shear strength of reinforced concrete transfer slab-column connections. Engineering Structures. 2021. Vol. 231. Pp. 1-11.
3. Trekin N.N., Krylov V.V., Trofimov S.V., Evstaf'eva E.B., Sarkisov D.Yu. Experimental-theoretical study of punching shear strength of slabs. Vestnik MGSU. 2021. Vol. 16. No. 8. Pp. 1006-1014. DOI: 10.22227/0869-7493.2021.16.08.1006-1014. (rus)
4. Trekin N.N., Sarkisov D.Yu., Krylov V.V., Evstaf'eva E.B., Andryan K.R. Bearing capacity of monolithic reinforced concrete slabs under punching shear under static and dynamic loading. Stroitel'stvo i rekonstruktsiya. 2022. No. 5. Pp. 67-79. DOI: 10.33979/2073-7416-2022-103-5-67-79. (rus)
5. Alekseytsev A.V., Antonov M.D. Resistance to progressive collapse of monolithic building frames under local damage of nodes from punching. Vestnik MGSU. 2024. Vol. 19. No. 9. Pp. 1454-1468. (rus)
6. Zenin A.S., Bolgov A.N., Sokurov A.Z., Kudinov O.V. Punching shear strength of flat slabs in wall support zones. Beton i zhelezobeton. 2022. No. 2 (610). Pp. 35-40. (rus)
7. Bolgov A.N., Ivanov S.I., Sokurov A.Z., Nevskiy A.V. On calculation of strength of joints between reinforced concrete columns and slabs in monolithic-frame high-rise buildings. Beton i zhelezobeton. 2021. No. 4 (606). Pp. 39-44. (rus)
8. Kabantsev O.V., Pesin K.O., Karlin A.V. Analysis of stress-strain state of slab structures in support zones. International Journal for Computational Civil and Structural Engineering. 2017. Vol. 13. No. 1. Pp. 55-62. (rus)
9. Tamrazyan A.G., Manaenkov I.K. On calculation of flat reinforced concrete slabs under local load application. Bezopasnost' stroitel'nogo fonda Rossii. Problemy i resheniya. 2017. No. 1. Pp. 156-161. (rus)
10. Manaenkov I.K. Determination of limiting values of flat reinforced concrete slab thickness from punching condition. Inzhenernyy vestnik Dona. 2025. No. 6. URL: ivdon.ru/ru/magazine/archive/n6y2025/10162. (rus)
11. Korovin N.N., Stupkin A.V. Punching of reinforced concrete slabs by column. Beton i zhelezobeton. 1978. No. 7. Pp. 36-38. (rus)
12. Ruf L.V., Vikman E.A. Prestressing in reinforced concrete floors constructed by lift-slab method. Beton i zhelezobeton. 1977. No. 5. Pp. 18-19. (rus)
13. Rizk E., Marzouk H., Hussein A. Effect of reinforcement ratio on punching capacity of RC plates. Canadian Journal of Civil Engineering. 2011. Vol. 38. No. 7. Pp. 729-740. DOI: 10.1139/l11-053.
14. Guandalini S., Burdet O.L., Muttoni A. Punching tests of slabs with low reinforcement ratios. ACI Structural Journal. 2009. Vol. 106. No. 1. Pp. 87-95.
15. Istomin A.D. Experimental studies of punching of monolithic slabs by rectangular columns. Aktual'nye problemy stroitel'noy otrasli i obrazovaniya: Sbornik dokladov Pervoy Natsional'noy konferentsii. Moscow, 2020. Pp. 69-74. (rus)
16. Filatov V.B., Galyautdinov Z.Sh. Experimental study and calculation method of strength of reinforced concrete slabs under punching. Gradostroitel'stvo i arkhitektura. 2021. Vol. 11. No. 4 (45). Pp. 53-65. (rus)
17. Muttoni A., Fernández Ruiz M. Size effect on punching shear strength: Differences and analogies with shear in one-way slabs. fib Bulletin. Punching shear of structural concrete slabs. 2017. No. 81. Pp. 59-72. DOI: 10.35789/fib.BULL.0081.Ch04.
18. Bažant Z.P., Dönmez A. Size effect on punching strength of reinforced concrete slabs with and without shear reinforcement. ACI Structural Journal. 2017. Vol. 114. No. 4. Pp. 875-886. DOI: 10.14359/51689719.
19. Li K.K.L. Influence of Size on Punching Shear Strength of Concrete Slabs: MEng dissertation. Montreal: McGill University, 2000. 92 p.
20. Lips S., Fernández Ruiz M., Muttoni A. Experimental Investigation on Punching Strength and Deformation Capacity of Shear-Reinforced Slabs. ACI Structural Journal. 2012. Vol. 109. Pp. 889-900.
21. Einpaul J. Punching strength of continuous flat slabs: PhD thesis. Lausanne: EPFL, 2016. 211 p.
22. Birkle G. Punching of Fat Slabs: The Influence of Slab Thickness and Stud Layouts: PhD dissertation. Calgary: UCalgary, 2004. 217 p.
23. SP 63.13330.2018 "SNiP 52-01-2003 Concrete and reinforced concrete structures. Main provisions". Moscow: Minstroy Rossii, 2018. 143 p. (rus)
24. EN 1992-1-1:2004 Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2004.
25. ACI Committee 318. *Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute: Farmington Hills, MI, 2019. 624 p.
26. fib Model Code for Concrete Structures 2020. fib Lausanne: Ernst & Sohn, 2020.
27. Muttoni A., Coronelli D., Martinelli L. Testing of a full-scale flat slab building for gravity and lateral loads. Engineering Structures. 2021. No. 243. Pp. 1-17. DOI: 10.1016/j.engstruct.2021.112551.
28. Ladner M., Schaeidt W., Gut S. Experimentelle Untersuchungen an Stahlbeton-Flachdecken. EMPA Bericht. 1977. No. 205. 96 p.
29. Bolgov A.N. Behavior of joints between high-strength concrete columns and slabs in monolithic buildings with frame-bracing system: PhD thesis. Moscow, 2005. 152 p. (rus)
30. EAD 160057-00-0301 L- or Z-shaped metal sheets for the increase of punching shear resistance of flat slabs or footings and ground slabs. EOTA. 2021.
Review
For citations:
Kabantsev O.V., Krylov S.V., Trofimov S.V. Experimental research methodology for punching shear strength of thick reinforced concrete slabs. Building and Reconstruction. 2025;(4):22-40. (In Russ.) https://doi.org/10.33979/2073-7416-2025-120-4-22-38