Deformability of dispersed reinforced expanded clay concrete under load
https://doi.org/10.33979/2073-7416-2025-119-3-120-128
Abstract
The article is devoted to the study of the deformation and destruction characteristics of expanded clay concrete dispersively reinforced with fibers. The article presents the test results of expanded clay concrete samples reinforced with high-modulus basalt fiber, as well as low-modulus synthetic micro- and macrofiber. The article considers the experimental data on the strength and energy characteristics of crack resistance of fiber expanded clay concrete samples, obtained experimentally in accordance with the provisions of GOST 29167-2021 «Concrete. Methods for determining crack resistance characteristics (fracture toughness) under static loading». It was found that reinforcement with low-modulus synthetic macrofibers can lead to an increase in the strength of expanded clay concrete, and a more significant one even in comparison with reinforcement with high-modulus basalt fibers. However, achieving this strength will be accompanied by significant deflections.
Keywords
About the Authors
Yu. V. PukharenkoRussian Federation
Pukharenko Yury V. - Doctor of Technical Sciences, Professor, Consulting Professor of the Department of Technology of Building Materials and Metrology,
St. Petersburg.
D. A. Panteleev
Russian Federation
Panteleev Dmitrii A. - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Technologies of Building Materials and Metrology,
St. Petersburg.
M. I. Zhavoronkov
Russian Federation
Zhavoronkov Mikhail I. - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Technologies of Building Materials and Metrology,
St. Petersburg.
References
1. Maksimova I.N., Makridin N.I. Tekhnologicheskie osobennosti formirovaniya struktury i svojstv konstrukcionnyh legkih betonov // Regional'naya arhitektura i stroitel'stvo. 2012. № 2. Pp. 45–48. (rus)
2. Maksimova I.N., Makridin N.I., Polubarova Yu.V. Osobennosti mekhanicheskogo povedeniya i strukturnyh izmenenij konstrukcionnogo keramzitobetona // Regional'naya arhitektura i stroitel'stvo. 2019. № 3 (40). Pp. 50–57. (rus)
3. Raupov Ch.S., Shermukhamedov U.Z., Malikov G.B. Sopostavlenie granic mikrotreshchinoobrazovaniya s dlitel'noj prochnost'yu konstruktivnogo keramzitobetona // Putevoj navigator. 2022. № 52 (78). Pp. 34–43. (rus)
4. Semenyuk S.D., Moskal'kova Yu.G. Opredelenie granic obrazovaniya mikrotreshchin v zavisimosti ot plotnosti keramzitobetona // Nauchnyj zhurnal stroitel'stva i arhitektury. 2018. № 4 (52). Pp. 129–136. DOI: 10.25987/VSTU.2018.52.4.012 (rus)
5. Semenyuk S.D., Moskal'kova Yu.G. Metodiki opredeleniya granic mikrotreshchinoobrazovaniya // Stroitel'stvo unikal'nyh zdanij i sooruzhenij. 2018. № 7 (70). Pp. 22–30. DOI: 10.18720/CUBS.70.2 (rus)
6. Abdumanonov A., Valiev R.M., Karimov S.N. Vliyanie struktury na vyazkost' razrusheniya keramzitobetona // Doklady Akademii nauk Respubliki Tadzhikistan. 2010. T. 53. № 6. Pp. 437–441. (rus)
7. Bezgodov I.M., Zaikin S.P. Polnye diagrammy deformirovaniya vysokoprochnogo keramzitobetona // Tekhnologii betonov. 2020. № 7-8 (168-169). Pp. 33–37. (rus)
8. Mitasov V.M., Koyankin A.A. O edinstve podhoda predstavleniya diagramm deformirovaniya raznovozrastnyh i raznoprochnyh betonov v sborno-monolitnyh konstrukciyah // Vestnik Sibirskogo gosudarstvennogo universiteta putej soobshcheniya. 2020. № 4 (55). Pp. 80–85. (rus)
9. Chiadighikaobi P.C., Jean P.V., Sserunjoji N. Performance evaluation of basalt fiber on the deflection strength of expanded clay concrete beam // Construction economics. 2020. № 6 (66). Pp. 66–79.
10. Moskal'kova Yu.G., Rzhevuckaya V.A. Polipropilenovaya fibra kak faktor snizheniya polnyh usadochnyh deformacij keramzitobetona // Nauchnyj zhurnal stroitel'stva i arhitektury. 2024. № 1 (73). Pp. 11–23. DOI: 10.36622/2541-7592.2024.73.1.001 (rus)
11. Sizyakov I.D. Treshchinostojkost' betona so stekloplastikovoj i stal'noj fibroj // Inzhenernyj vestnik Dona. 2024. № 5 (113). Pp. 379–387. (rus)
12. Pukharenko Yu.V., Panteleev D.A., Morozov V.I., Zhavoronkov M.I. Vliyanie krupnogo zapolnitelya na energeticheskie i silovye harakteristiki stalefibrobetona // Stroitel'stvo i rekonstrukciya. 2022. № 3 (101). Pp. 110–118. DOI: 10.33979/2073-7416-2022-101-3-110-118 (rus)
13. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Ocenka effektivnosti dispersnogo armirovaniya betonov po pokazatelyam prochnosti i treshchinostojkosti // Vestnik SibADI. 2022, T. 19, № 5 (87). Pp. 752–761. DOI: 10.26518/2071-7296-2022-19-5-752-761 (rus)
14. Kolchunov V.I., Kuznecova K.Yu., Fedorov S.S. Model' kriteriya treshchinostojkosti i prochnosti plosoknapryazhennyh konstrukcij iz vysokoprochnogo fibrobetona i fibrozhelezobetona // Stroitel'stvo i rekonstrukciya. 2021. № 3 (95). S. 15–26. DOI: 10.33979/2073-7416-2021-95-3-15-26 (rus)
15. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Razvitie metoda ispytaniya treshchinostojkosti stalefibrobetona // Ekonomika stroitel'stva. 2023. № 9. Pp. 132–137. (rus)
16. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Diagrammy deformirovaniya cementnyh kompozitov, armirovannyh stal'noj provolochnoj fibroj // Academia. Arhitektura i stroitel'stvo. 2018. № 2. Pp. 143–147. DOI: 10.22337/2077-9038-2018-2-143-147 (rus)
17. Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Sovershenstvovanie metodov opredeleniya silovyh i energeticheskih harakteristik treshchinostojkosti fibrobetona // Vestnik MGSU. 2019. T. 14. Vyp. 3. Pp. 301–310. DOI: 10.22227/1997-0935.2019.3.301-310 (rus)
Review
For citations:
Pukharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Deformability of dispersed reinforced expanded clay concrete under load. Building and Reconstruction. 2025;(3):120-128. (In Russ.) https://doi.org/10.33979/2073-7416-2025-119-3-120-128