Geometric Hypothesis for Normal Sections of Flexural and Eccentrically Compressed Reinforced Concrete Members
https://doi.org/10.33979/2073-7416-2025-118-2-33-43
Abstract
Experimental and numerical studies of the influence of plastic deformations of reinforcement on the stress-strain state of normal sections of bent reinforced concrete elements have been carried out. The results of investigations have shown that there is a fracture in the strain diagram in the zone of the neutral axis. A bilinear approximation of strain distribution along the section height is proposed. Based on the results of finite element model calculations, the parameter characterizing the ratio of compression and tension strains is estimated. Comparison with the analogous experimental dependence has been carried out, that showed their satisfactory coincidence. To estimate the distribution of deformations along the section height in the elastic and plastic stages of reinforcement operation under one-temporal action of bending moment and longitudinal force, a number of numerical calculations of off-center compressed reinforced concrete elements with the same characteristics were performed. The analysis of the calculation results showed a close character of deformation distribution along the section height in bending and eccentrically compressed elements for the case of large eccentricities.
About the Authors
S. O. KurmavinaRussian Federation
Kurnavina Sofyia O. - candidate in tech. sc., docent, associated prof. of the dep. of reinforced concrete and stone structures.
Moscow
I. V. Tsatsulin
Russian Federation
Tsatsulin Ilya V. - Moscow Russia candidate in tech. sc, team leader.
Moscow
References
1. Abakanov M.S. Malotsiklovaya prochnost zhelezobetonnykh konstruktsiy karkasnykh zdaniy pri deystvii nagruzok tipa seismicheskikh [Low-cycle strength of reinforced concrete frame structures under seismic-type loads]. Alma-Ata: AO «KazNIISA», 2016. 132 p. (rus).
2. Akbiyev R.T., Abakanov M.S. Operativnaya otsenka posledstviy razrushitelnogo zemletryaseniya v Turtsii (po ofitsialnym dannym SMI i globalnoy seti) [Operational assessment of the consequences of the destructive earthquake in Turkey (based on official media and global network data)]. Geologiya i okruzhayushchaya sreda. 2023. Vol. 3. No. 1. Pp. 35–51. (rus).
3. Mkrtychev O.V., Reshetov A.A. Obespecheniye seismostoykosti zhelezobetonnykh zdaniy [Ensuring seismic resistance of reinforced concrete buildings]. Zhelezobetonnye konstruktsii. 2024. No. 1(5). Pp. 57–67. (rus).
4. Mkrtychev O.V., Dorozhinskiy V.B., Sidorov D.S. Issledovaniye seismostoykosti zhelezobetonnykh zdaniy razlichnykh konstruktivnykh skhem [Study of seismic resistance of reinforced concrete buildings with different structural schemes]. Vestnik MGSU. 2015. No. 12. Pp. 66–75. (rus).
5. Ruzgich V.V., Berzginskaya L.P., Levina E.A., Ponomareva E.I. O prichinakh vozniknoveniya i posledstviyakh dvukh razrushitelnykh zemletryaseniy v Turtsii [On the causes and consequences of two destructive earthquakes in Turkey]. Geologiya i okruzhayushchaya sreda. 2023. Vol. 3. No. 1. Pp. 22–34. (rus).
6. Areen Aljaafreh, Yazan Alzubi, Eslam Al-Kharabsheh, Bilal Yasin. Seismic Performance of Reinforced Concrete Structures with Concrete Deficiency Caused by In-situ Quality Management Issues. Civil Engineering Journal. 2023. Vol. 9. No. 8. Pp. 1957–1970.
7. Garnitsky V.I., Golda Yu.L., Kurnavina S.O. Damage development process in reinforced concrete frame under the action of seismic loads. Proceedings of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete «Concrete and Reinforced Concrete — Glance at Future». Moscow, 2014. Vol. II. Pp. 57–67.
8. Bedov A.I., Nikolenko I.I. Obespecheniye ekspluatatsionnykh kharakteristik zhelezobetonnykh elementov karkasov zdaniy, podvergshikhsya seismicheskim vozdeystviyam [Ensuring operational characteristics of reinforced concrete frame elements of buildings subjected to seismic impacts]. Stroitelstvo i rekonstruktsiya. 2021. No. 1(93). Pp. 3–15. DOI: 10.33979/2073-7416-2021-93-1-3-15. (rus).
9. Alekseytsev A.V. Analiz ustoychivosti zhelezobetonnoy kolonny pri gorizontalnykh udarnykh vozdeystviyakh [Stability analysis of a reinforced concrete column under horizontal shock impacts]. Zhelezobetonnye konstruktsii. 2023. No. 2(2). Pp. 3–12. DOI: 10.22227/2949-1622.2023.2.3-12. (rus).
10. Kabanzev O.V., Sharipov S., Useinov E.S. O metodike opredeleniya koeffitsienta dopustimykh povrezhdeniy seismostoykikh konstruktsiy [Determination of allowable damage factor of antiseismic structures]. Vestnik TGASU. 2016. No. 2. Pp. 117–126. (rus).
11. Tamrazyan A.G., Chernik V.I. Zhestkost povrezhdennoy pozharom zhelezobetonnoy kolonny pri razgruzke posle vysokointensivnogo vozdeystviya [Stiffness of a fire-damaged reinforced concrete column during unloading after high-intensity impact]. Vestnik MGSU. 2023. Vol. 18. No. 9. Pp. 1369–1382. (rus).
12. Shulgin V.N., Larionov V.I. Dinamicheskiy raschet izgibaemykh konstruktsiy zashchitnykh sooruzheniy v plasticheskoy stadii [Dynamic analysis of flexural structures of protective facilities in the plastic stage]. Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2007. No. 4. Pp. 31–34. (rus).
13. Tamrazyan Ashot G., Kudryavtsev Maksim V. Influence of Damage Level on Dynamic Characteristics of Reinforced Concrete Structures when Assessing their Seismic Resistance. Structural Mechanics of Engineering Constructions and Buildings. 2024. Vol. 20. No. 3. Pp. 255–264. DOI: 10.22363/1815-5235-2024-20-3-255-264.
14. Perelmuter A.V., Kabanzev O.V. O kontseptualnykh polozheniyakh norm proektirovaniya seismostoykogo stroitelstva [On conceptual provisions of seismic design standards]. Vestnik MGSU. 2010. No. 4. Pp. 238–241. (rus).
15. Kurnavina S.O., Tsatsulin I.V. Napryazhenno-deformirovannoye sostoyaniye zhelezobetonnykh balok pri smene znaka usiliya [Stress-strain state of reinforced concrete beams under sign-changing loads]. Promyshlennoye i grazhdanskoye stroitelstvo. 2023. No. 2. Pp. 44–52. DOI: 10.33622/0869-7019.2023.02.44-52. (rus).
16. Kurnavina S.O., Tsatsulin I.V. Osobennosti deformirovaniya izgibaemykh zhelezobetonnykh elementov pri deystvii nagruzok bolshoy intensivnosti [Features of deformation of flexural reinforced concrete elements under high- intensity loads]. Stroitelstvo i rekonstruktsiya. 2023. No. 3(107). Pp. 3–16. DOI: 10.33979/2073-7416-2023-107-3-3-16. (rus).
17. Popov D.S. Eksperimentalnyye issledovaniya dinamicheskikh svoystv korrozionno povrezhdennykh szhatykh zhelezobetonnykh elementov [Experimental study of dynamic properties of corrosion-damaged compressed reinforced concrete elements]. Stroitelstvo i rekonstruktsiya. 2022. No. 2. Pp. 55–64. DOI: 10.33979/2073-7416-2022-100-2-55-64. (rus).
18. Kurnavina S.O., Tsatsulin I.V., Manaenkov I.K. Vliyaniye plasticheskikh deformatsiy na rabotu zhelezobetonnykh izgibaemykh elementov pri smene znaka usiliya [Influence of plastic deformations on the behavior of reinforced concrete flexural elements under sign-changing loads]. Stroitelstvo i rekonstruktsiya. 2021. No. 6(98). Pp. 50– 62. DOI: 10.33979/2073-7416-2021-98-6-50-62. (rus).
19. Garnitsky V.I. Prochnost zhelezobetonnykh konstruktsiy po secheniyam, sovpadayushchim s fakticheskim polem napravleniy treshchin (teoriya i eksperiment) [Strength of reinforced concrete structures in sections coinciding with the actual crack direction field (theory and experiment)]. Proceedings of the III All-Russian (II International) Conference on Concrete and Reinforced Concrete «Concrete and Reinforced Concrete — Glance at Future». 2014. Vol. 1. Pp. 27–38. (rus).
20. SP 63.13330.2018 «SNiP 52-01-2003 Betonnye i zhelezobetonnye konstruktsii. Osnovnyye polozheniya» [Concrete and reinforced concrete structures. Basic provisions]. Moscow, 2018.
Review
For citations:
Kurmavina S.O., Tsatsulin I.V. Geometric Hypothesis for Normal Sections of Flexural and Eccentrically Compressed Reinforced Concrete Members. Building and Reconstruction. 2025;(2):33-43. (In Russ.) https://doi.org/10.33979/2073-7416-2025-118-2-33-43