Preview

Building and Reconstruction

Advanced search

Bonding of corrosion-damaged reinforced concrete elements in case of fire impact

https://doi.org/10.33979/2073-7416-2025-117-1-40-47

Abstract

This paper examines the bond strength between reinforcement and concrete in reinforced concrete structures under combined effects of corrosion and high temperatures. The analysis employs analytical models and regulatory data to evaluate changes in the strength characteristics of reinforcement and concrete under elevated temperatures and corrosion damage. Thermal and corrosion effects influencing bond strength reduction, material strength degradation, and internal stresses due to differences in thermal expansion coefficients of steel and concrete were taken into account. Results indicate that under high temperatures and significant corrosion levels, bond strength between reinforcement and concrete decreases considerably. The presented models and calculation dependencies allow for a preliminary assessment of the reliability and fire resistance of reinforced concrete structures under corrosion conditions.

About the Authors

A. G. Tamrazyan
Federal State Budgetary Educational Institution of Higher Education "National Research Moscow State University of Civil Engineering" (NRU MGSU)
Russian Federation

Tamrazyan Ashot Georgievich, Doctor in tech. sc., Prof, Head of the Department of Reinforced Concrete and Masonry Structures

Moscow  



D. S. Baryak
Federal State Budgetary Educational Institution of Higher Education "National Research Moscow State University of Civil Engineering" (NRU MGSU)
Russian Federation

Baryak Dmitry Sergeevich, Postgraduate student of the Department of Reinforced Concrete and Masonry Structures 

Moscow 



References

1. Tamrazyan A.G., Lushnikova V.Yu. Vliyanie korrozii armatury na stseplenie mezhdu armaturoy i betonom [Influence of corrosion on the bond strength between reinforcement and concrete]. Magazine of Civil Engineering. 2018. Vol. 4(80). Pp. 203–212. (rus)

2. Mineev M.S. Issledovanie parametrov stsepleniya armatury v betone dlya ego otsenki pri korrozii [Study of parameters of reinforcement-to-concrete bond strength for its assessment under corrosion]. Nauchnyy zhurnal NIU MGSU. 2018. No. 3. Pp. 45–52. (rus).

3. Benin A.V., Semyonov A.S., Semyonov S.G., Melnikov B.E. Matematicheskoe modelirovanie protsessa razrusheniya stsepleniya armatury s betonom. Chast' 1. Modeli s uchetom nesploshnosti soedineniya [Mathematical modeling of the process of reinforcement-to-concrete bond failure. Part 1. Models considering discontinuity of the joint]. Stroitelnaya mekhanika i raschet sooruzheniy. 2014. No. 1. Pp. 20–28. (rus).

4. Ma Q., Guo R., Zhao Z., Lin Z., He K. Mechanical properties of concrete at high temperature—A review // Construction and Building Materials. 2015. Vol. 93. Pp. 371–383.

5. Okolnikova G.E., Tikhonov G.I. Stseplenie s betonom novykh vidov armaturnogo prokata dlya stroitel'stva [Bond strength with concrete of new types of reinforcing steel for construction] // Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya, Vyp. 21, №2, 2020, S. 144-152 (rus).

6. Andrade C., Alonso C. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method // Materials and Structures. 2004. Vol. 37. Pp. 623–633.

7. Bertolini L., Elsener B., Pedeferri P., Redaelli E., Polder R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair. Wiley, 2013. 434 p.

8. Saad M., Abo-El-Enein S.A., Hanna G.B., Kotkata M.F. Effect of temperature on physical and mechanical properties of concrete containing silica fume // Cement and Concrete Research. 1996. Vol. 26, No. 5. Pp. 669–675.

9. Bertolini L. Steel corrosion and service life of reinforced concrete structures // Structure and Infrastructure Engineering. 2008. Vol. 4, No. 2. Pp. 123–137.

10. Lin W.M., Lin T.D., Powers-Couche L.J. Microstructures of fire-damaged concrete // ACI Materials Journal. 1996. Vol. 93, No. 3. Pp. 199–205.

11. Ozawa M., Uchida S., Kamada T., Morimoto H. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission // Construction and Building Materials. 2012. Vol. 37. Pp. 621– 628.

12. Neville A.M. Properties of Concrete. 5th ed. Pearson, 2011. 846 p.

13. Mehta P.K., Monteiro P.J.M. Concrete: Microstructure, Properties, and Materials. 4th ed. McGraw-Hill Education, 2014. 704 p.

14. Tuutti K. Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, 1982. 468 p.

15. Angst U., Elsener B., Larsen C.K., Vennesland Ø. Critical chloride content in reinforced concrete – A review // Cement and Concrete Research. 2009. Vol. 39, No. 12. Pp. 1122–1138.

16. Consolazio G.R., McVay M.C., Rish J.W. III. Measurement and prediction of pore pressures in saturated cement mortar subjected to radiant heating // ACI Materials Journal. 1998. Vol. 95, No. 5. Pp. 525–536.

17. ACI Committee 222. Protection of Metals in Concrete Against Corrosion. ACI 222R-01. American Concrete Institute, 2001. 41 p.

18. Popov A.M., Samoshkin A.S., Tikhomirov V.M. Metody issledovaniya vzaimodeystviya armatury s betonom chast' 1. Eksperimental'nye i analiticheskie metody [Methods for studying the interaction of reinforcement with concrete chapter 1: Experimental and analytical approaches]. Vestnik Sibirskogo gosudarstvennogo universiteta putej soobshcheniya. 2021. № 2 (57). Pp. 53-60. (rus).

19. Angst U., Polder R., Bertolini L. Corrosion in reinforced concrete structures: Mechanisms and strategies. CRC Press, 2017. 375 p.

20. Tamrazyan A.G. Nesushchaya sposobnost korrozionno-povrezhdennykh izgibayemykh zhelezobetonnykh elementov, podvergnutykh ognevomu vozdeystviyu [Load-bearing capacity of corrosion-damaged flexural reinforced concrete elements exposed to fire]. Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and Construction]. 2022. No. 4. Pp. 130–137. (rus)

21. Tamrazyan A.G. Ogneudarostoykost nesushchikh zhelezobetonnykh konstruktsiy vysotnykh zdaniy [Fire impact resistance of load-bearing reinforced concrete structures of high-rise buildings]. Zhilishchnoye stroitel'stvo [Housing Construction]. 2005. No. 1. Pp. 7–43. (rus)

22. GOST 30247.0-94. Konstruktsii stroitel'nye. Metody ispytaniya na ognestoykost' [Building constructions. Methods for testing fire resistance]. (rus)

23. Tamrazyan A., Avetisyan L. Comparative analysis of analytical and experimental results of the strength of compressed reinforced concrete columns under special combinations of loads. In: MATEC Web of Conferences. 5th International Scientific Conference on Integration, Partnership and Innovation in Construction Science and Education, IPICSE 2016. 2016. P. 01029.

24. Tamrazyan A.G., Avetisyan L.A. Experimental and theoretical study of reinforced concrete elements under different characteristics of loading at high temperatures. In: XXV Polish – Russian – Slovak Seminar “Theoretical Foundation of Civil Engineering”. Ser. "Procedia Engineering". 2016. Pp. 721–725.


Review

For citations:


Tamrazyan A.G., Baryak D.S. Bonding of corrosion-damaged reinforced concrete elements in case of fire impact. Building and Reconstruction. 2025;1(1):40-47. (In Russ.) https://doi.org/10.33979/2073-7416-2025-117-1-40-47

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)