Preview

Building and Reconstruction

Advanced search

Increasing the performance properties of hydraulic concrete using ultra- and fine-dispersed additives

https://doi.org/10.33979/2073-7416-2024-116-6-110-121

Abstract

Taking into account the constantly growing requirements for the quality, reliability and durability of concrete structures for hydraulic structures, there is a need to develop hydraulic concrete compositions with improved performance properties. The aim of the study is to improve the physico-mechanical and deformative properties of hydraulic concrete using finely dispersed aluminosilicate rocks – perlites and colloidal additives in the form of silicic acid sol. The object of the study is modified hydraulic engineering concrete based on a composite binder using finely dispersed vitreous and crystallized perlite, silicic acid sol and a polycarboxylate-based superplasticizer «Polyplast». Results of the study: The choice of silica-containing additives is substantiated and it is shown that their use has a positive effect on the properties of hydraulic concrete. The effect of complex modification on the properties of hydraulic concrete was established by reducing the content of Portland cement and replacing it with finely dispersed glassy perlite, pre-crushed to a specific surface of 300-600 m2/kg, introducing silicic acid sol and the superplasticizer "Polyplast", which make it possible to improve the physical, mechanical, deformation and hydrophysical properties: compressive strength - 53.4 MPa; ultimate tensile strength in bending - 10.9 MPa; crack resistance coefficient - 0.20; prismatic strength - 46.3 MPa; modulus of elasticity 37.345 MPa × 103; Poisson's ratio - 0.199, water absorption - by weight - 2.43%; water resistance grade - W16. It has been proven that by adding finely dispersed perlite, silica sol and superplasticizer Polyplast to Portland cement, it is possible to obtain hydraulic concrete characterized by strength indicators not inferior in strength to the control composition, and with increased indicators of water resistance and crack resistance compared to traditional compositions.

About the Authors

L. A. Urkhanova
National Research Moscow State University of Civil Engineering (NRU MGSU)
Russian Federation

Urkhanova Larisa A., Doctor of Technical Sciences, Professor, Professor of the Department of Urban Planning

Moscow



A. A. Ivanov
East Siberian State University of Technology and Management (VSGUTU)
Russian Federation

Ivanov Andrey A., Postgraduate student of the Department of Construction Materials, Highways and Woodworking

Ulan-Ude



S. A. Lhasaranov
East Siberian State University of Technology and Management (VSGUTU)
Russian Federation

Lhasaranov Solbon A., PhD, Associate Professor, Head of the Department of Construction Materials, Highways and Woodworking 

Ulan-Ude



References

1. Barbara K., Maciej B., Maciej P., Aneta Z. Analysis of cracking risk in early age mass concrete with different aggregate types. Procedia Engineering. 2017. Vol. 193. Pp. 234–241. DOI: 10.1016/j.proeng.2017.06.209

2. Bingqi L., Zhenhong W., Yunhui J., Zhenyang Z. Temperature control and crack prevention during construction in steep slope dams and stilling basins in high-altitude areas. Advances in Mechanical Engineering. 2018. Vol. 10.Pp. 1–15. DOI: 10.1177/1687814017752480

3. Kuzmanovic V., Savic L., Mladenovic N. Computation of thermal stresses and contraction joint distance of rcc dams. Journal of Thermal Stresses. 2013. Vol. 36. Issue 2. Pp. 112–134. DOI: 10.1080/01495739.2013.764795

4. Zhang X., Shi R., Dai H., Liu Q., Zhang X. Simulation and research on temperature field of Taishan roller compacted concrete gravity dam [ IOP Conference Series : Earth and Environmental Science. 2019.] Vol. 237. P. 032117. DOI: 10.1088/1755-1315/237/3/032117

5. Grigoriev V.G., Kozlova V.K., Andryushina E.E., Shkrobko E.V., Likhosherstov A. A. Composite Portland cements for hydraulic engineering. Polzunovsky Bulletin. 2012. Vol. 1-2. P.62-64. URL: https://cyberleninka.ru/article/n/kompozitsionnye-portlandtsementy-dlya-gidrotehnicheskogo-stroitelstva.

6. Ivanov A.A., Urkhanova L.A., Lkhasaranov S.A., Khardaev P.K. Study of the influence of finely dispersed additives on the properties of composite binders for hydraulic concrete. [Bulletin of VSGUTU. 2023]. Vol. 2 (89). P. 80-88. DOI: 10.53980/24131997_2023_2_80

7. Tkach E.V., Filimonova Yu.S., Korneev A.I. Heavy concrete based on a polydisperse binder with a complex polymer modifier with improved performance indicators. Construction and Reconstruction. 2022. Vol. 2 (100). P. 112119. DOI: 10.33979/2073-7416-2022-100-2-112-119.

8. Li Q., Liang G., Hu Y. , Zuo Z. Numerical analysis of temperature rise of a concrete arch dam after sealing based on measured data. Mathematical Problems in Engineering, 2014 (6), Pp. 1-10. DOI:10.1155/2014/602818

9. Aniskina N.A, Chong Chyk Nguyen. The problem of temperature cracking in concrete gravity dams. Bulletin of MGSU, 2020. - No. 3. – P. 380-398. DOI: 10.22227/1997-0935.2020.3.380-398

10. Yerramala A., Ganesh Babu K. Transport properties of high volume fly ash roller compacted concrete. Cement and Concrete Composites. 2011. Vol. 33, issue. 10. Pp. 1057–1062. DOI:10.1016/j.cemconcomp.2011.07.010

11. Tkach E.V., Filimonova YU.S. Modified heavy concrete based on polydisperse binder for irrigation and drainage construction. Silicate engineering and technology. 2022. Vol. 29. No. 4. P. 326-334. URL: https://elibrary.ru/zeudxh?ysclid=m1j3b43xj4220283422.

12. Larsen O.A., Aleksandrova O.V., Narut V.V., Polozov A.A., Bakhrakh A. M. Study of the properties of active mineral additives for use in hydraulic engineering. Bulletin of BSTU named after V. G. Shukhov. 2020. Vol. 8. P. 8-14. DOI: 10.34031/2071-7318-2020-5-8-8-17.

13. Kasatkin S.P. Highly effective concrete modified with a complex chemical additive containing nanodispersions of silicon dioxide hydrous: dissertation for the degree of . degree of candidate of technical sciences. – Saint Petersburg, 2023. – 138 p. URL: https://pstu.ru/files/2/file/Dissertaciya._Kasatkin_S.P._02.07.2023.pdf

14. Urkhanova, L.A., Ivanov A.A., Lhasaranov S.A. Composite cement with dispersed perlite and colloidal additive for hydraulic concrete. Cement and its application. - 2024. Vol. 1-2024. DOI: 10.61907/CIA.2024.87.76.001

15. Bazhenov Yu.M., Alimov L.A., Voronin V.V. Structure and properties of concrete with nanomodifiers based on technogenic waste. M.: MISI-MGSU. 2013, 201 p. URL: https://mgsu.ru/resources/izdatelskayadeyatelnost/izdaniya/monografii/1725/?ysclid=m09bb4v43i945506938

16. Shane D., Mark T., Cheeseman C.R., Comparison of Test methods to assess pozzolanic activity. Cement and Concrete Composites. 2010. Vol. 32 (2). Pp. 121–127. DOI:10.1016/j.cemconcomp.2009.10.008

17. Urkhanova L.A., Tsydypova A.Ts. Effect of silica sol on the physical and mechanical properties of polystyrene concrete. Construction materials. 2018. Vol. 1–2 . P.45-51. DOI: https://doi.org/10.31659/0585-430X-2018-756-1-2-45-51

18. Zhernovoy F.E., Miroshnikov E.V. Comprehensive assessment of factors increasing the strength of cement stone by adding ultrafine perlite. Bulletin of the BSTU named after V. G. Shukhov, 2009. - Vol. 2. P. 55-60. URL: https://cyberleninka.ru/article/n/kompleksnaya-otsenka-faktorov-povysheniya-prochnosti-tsementnogo-kamnyadobavkami-ultradispersnogo-perlita

19. Lesovik V.S., Zhernovoy F.E., Glagolev E. S. Use of natural perlite in the composition of mixed cements. Construction materials, 2009. - Vol. 6. P. 84-87. URL: https://elibrary.ru/kuucdt?ysclid=m09bh8i6g321380846

20. Aniskin N.A., Nguyen T.C., Hoang Q.L. Influence of size and construction schedule of massive concrete structures on its temperature regime.[MATEC Web of Conferences. 2018]. vol. 251. p. 02014. DOI: 10.1051/matecconf/201825102014

21. Lkhasaranov S.A., Urkhanova L.A., Ivanov A.A., Smirnyagina N.N. Study of phase composition of composite binders for hydraulic concrete. Bulletin of VSGUTU. 2024. Vol. 2 (93). DOI 10.53980/24131997_2024_2_112

22. Hang X., Shi R., Dai H., Liu Q., Zhang X. Simulation and research on temperament field of Taishan roller compacted concrete gravity dam. [IOP Conference Series: Earth and Environmental Science. 2019]. vol. 237.p. 032117. DOI: 10.1088/1755-1315/237/3/032117

23. Tkach E., Filimonova Y. Modified concrete for irrigation and drainage con-struction. [E3S Web of Conferences. 2023.] Vol. 410. DOI:10.1051/e3sconf/202341001007.

24. Nguyen T.C., Luu X.B. Reducing temperature difference in mass concrete by surface insulation. Magazine of Civil Engineering. 2019. vol. 4 (88). Pp. 70–79. DOI: 10.18720/MCE.88.

25. Dem'yanenko O.V., Kopanitsa N.O., Sarkisov Yu.S., et al. Study of the properties of cement stone with a complex additive. [Bulletin of TSUACE.] - 2020. - Vol. 22, No. 4. - P. 147–156. DOI: 10.31675/1607-1859-2020-22-4-147-156

26. Zelenkevich D.S., Yagubkin A.N., Bozylev V.V. Use of polymer-mineral additives to improve the water impermeability and frost resistance of concrete. [Bulletin of Polotsk State University. Series F. Construction. Applied Sciences]. 2013. Vol. 16. URL: https://cyberleninka.ru/article/n/ispolzovanie-polimerno-mineralnyh-dobavok-dlyapovysheniya-vodonepronitsaemosti-i-morozostoykosti-betona

27. Bayburin A.Kh., Kocharina E.N., Kocharin N.V., Kiyanets A.V., Lebed A.R. Influence of chemical additives on the properties of concrete. [IVD]. 2022. Vol. 6 (90). URL: https://cyberleninka.ru/article/n/vliyanie-himicheskihdobavok-na-svoystva-betona


Review

For citations:


Urkhanova L.A., Ivanov A.A., Lhasaranov S.A. Increasing the performance properties of hydraulic concrete using ultra- and fine-dispersed additives. Building and Reconstruction. 2024;(6):110-121. (In Russ.) https://doi.org/10.33979/2073-7416-2024-116-6-110-121

Views: 74


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)