Preview

Building and Reconstruction

Advanced search

The use of artificial intelligence to control the engineering equipment of buildings

https://doi.org/10.33979/2073-7416-2024-115-5-138-148

Abstract

There is an overview of the intelligent systems use in different engineering systems of buildings which are designing in different countries. It has been presented the history of considered systems development and application for different sectors on national economy. Authors have described the results of practical application and control devices operation features in different engineering systems for providing microclimate (heating, ventilation and air conditioning). It has been detailed highlighted the options for regulating the building life support systems with modern controllers and integration them to joint unified system. Authors have determined the proposed key points of neural control systems development for engineering equipment in building and structures. Researchers have described possible options for introducing neurocontrollers to a building (including multi-stage introduction of single system neurocontroller to a global system neurocontroller with several engineering systems). The results of the research will be interested for the services operating engineering equipment of buildings and structures for different purposes. Also this information could be used by the planning services and developing companies which use modern automated control systems for engineering systems.

About the Authors

I. L/ Shubin
Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Shubin Igor L., doctor in tech. sc., corr. member of RAACS, director

Moscow



A. S. Strongin
Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Strongin Andrew S., candidate in tech. sc., senior researcher, head of laboratory «Environmental safety and energy efficiency of buildings engineering equipment»

Moscow



M. A. Razakov
Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Razakov Muhammet A., engineer of laboratory «Environmental safety and energy efficiency of buildings engineering equipment»

Moscow



References

1. Irkhin I.A., Bulatov V.G., Vorontsov K.V. Additive regularizarion of topic models with fast text vectorizartion. Computer Research and Modeling. 2020. Vol. 12. No. 6. Pp. 1515-1528. (rus).

2. Irkhin I.A., Vorontsov K.V. Convergence of the algorithm of additive regularization of topic models. Proceedings of the Steklov Institute of Mathematics (Suppl.). 2021. Vol. 315. Suppl. 1. Pp. S128–S139. (rus).

3. Gerasimenko N. A., Chernyavsky A. S., Nikiforova M. A., Nikitin M. D., Vorontsov K. V. Inkremental'noye obucheniye tematicheskikh modeley dlya poiska trendovykh tem v nauchnykh publikatsiyakh [Incremental training of topic models for searching for trending topics in scientific publications]. Doklady Rossijskoj Akademii Nauk. Matematika, Informatika, Processy Upravleniya. 2022. vol. 508, no. 1. pp. 106-108. doi:10.31857/s2686954322070086. (rus).

4. Filippov V. V. Analiz nauchno-tekhnicheskikh rabot po avtomaticheskomu upravleniyu teploenergeticheskikh ustanovok [Analysis of scientific and technical works on automatic control of thermal power plants]. Sovremennyye dostizheniya nauchno-tekhnicheskogo progressa. 2023. Vol. 8. No. 3. Pp. 9-11. doi:10.18411/sdntp-05-2023-02. (rus).

5. Frolov V.Y., Zhiliglotov R.I. Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink. Journal of Mining Institute. 2018. Vol. 229. p. 92. DOI: 10.25515/PMI.2018.1.92. (rus).

6. Murtazin T. E., Shevchenko A. A., Titov V. G. Sistema vektornogo upravleniya avtonomnym elektroprivodom [Vector control system for an autonomous electric drive]. Vestnik MGTU. Trudy Murmanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2023. Vol. 26. No. 4. Pp. 449-456. doi:10.21443/1560-9278-2023-26 4-449-456. (rus).

7. Kostylev A. V., Esaukova D. V., Kazakov E. G. Primeneniye neyroupravleniya v asinkhronnom elektroprivode so skalyarnym upravleniyem [Application of neural control in an asynchronous electric drive with scalar control]. Energetika. Innovatsionnyye napravleniya v energetike. cals-tekhnologii v energetike. 2014. No. 1. Pp. 207-217. (rus).

8. Burmeyster M. V., Bulatov R. V., Berdyshev I. I. Development of a Method for Optimizing the Voltage Mode Based on Fuzzy Logic. IEEE. Pp. 9782944. doi:10.1109/Inforino53888.2022.9782944.

9. Wu Z., Gao Z., Li D., Chen Y., Liu Y. On transitioning from PID to ADRC in thermal power Control Theory and Technology. 2021. Vol. 19. Pp. 3-18. plants.

10. Brodach M.M., Shilkin N.V. Neyronnyye seti: optimal'noye upravleniye otpuskom teplovoy energii [Neural networks: optimal control of thermal energy supply]. AVOK: Ventilyatsiya, Otopleniye, Konditsionirovaniye Vozdukha, Teplosnabzheniye i Stroitel'naya Teplofizika. 2019. no. 8. pp. 52-57. (rus).

11. Blinova K. A., Kurnaleyeva A. A., Burmeyster M. V., Bulatov R. V. Rynochnyy mekhanizm upravleniya rezhimami raboty generiruyushchego oborudovaniya elektrostantsiy [Market mechanism for managing the operating modes of generating equipment of power plants]. XXXIII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «EUROPEAN RESEARCH» [Proceedings of XXXIII International Scientific and Practical Conference «EUROPEAN RESEARCH»]. Penza: Nauka i Prosveshcheniye, 2021. Pp. 74-78. (rus).

12. Verentsov L. A., Burmeister M. V., Statsenko D. V., Malenkova E. A. Otsenka ekvivalentnoy inertsii v ees so znachitel'noy doley vie [Assessment of equivalent inertia in an eps with a significant share of renewable energy sources]. Nauka i biznes: puti razvitiya. 2023. Vol. 148. No. 10. Pp. 11-14. (rus).

13. Samoilov A. A., Sergeeva, M. M., Burmeyster, M. V., Kislova, E. A., Zaliznyi, S. A. Intelligent engineering of electric energy storage systems in the Russian Federation: Fundamentals // IEEE. 2021. Pp. 1-5.

14. Boldyrev V.V., Gorkavy M.A. Razrabotka intellektual'nogo modulya upravleniya avtomatizirovannoy avtonomnoy sistemoy energoobespecheniya [Development of an intelligent control module for an automated autonomous power supply system]. Uchen. zap. KnaGTU. 2021. No. 3. Pp. 9-18. (rus).

15. Das H. P., Lin Y. W., Agwan U., Spangher L., Devonport A., Yang Y., Drgona J., Chong A., Schiavon S., Spanos C. J. Machine Learning for Smart and Energy-Efficient Buildings. Environmental Data Science. 2024. Vol. 3. Pp. e1. doi:10.1017/eds.2023.43

16. Alanne K., Sierla S. An overview of machine learning applications for smart buildings. Sustainable Cities and Society. 2022. Vol. 76. Pp. 103445.

17. Burkov V., Titarenko B. Economic mechanisms for environmental risk management. E3S Web of Conferences. 2019. Vol. 91. Pp. 08009.

18. Galkina E.V. Analiz instrumentov verifikatsii proyektnoy dokumentatsii [Analysis of design documentation verification tools]. Scientific and Technical Volga Region Bulletin. 2018. No. 6. Pp. 95-97. doi:10.24153/2079-5920-2018-8-6-95-97. (rus).

19. Galkina E., Kuzina O. Building information model verification at the lifecycle stage of construction. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. No. 5. Pp. 062031. doi:10.1088/1757899X/365/6/062031.

20. Burian S. O., Kiselychnyk O., Pushkar M. V., Reshetnik V. S., Zemlianukhina H. Y. Energy-efficient control of pump units based on neural-network parameter observer. Technical Electrodynamics. 2020. No. 1. Pp. 71-77. doi:10.15407/techned2020.01.071.

21. Gromov G. N., Primin O. G. Use of genetic algorithms for calibration of hydraulic models of water supply systems. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 456. Pp. 012108. doi:10.1088/1757899X/456/1/012108.

22. Vladislav M.M., Arkharov I.A. Prospects for control methods in engineering systems. Refrigeration Technology. 2022. Vol. 111. No. 4. Pp. 213–220. doi:10.17816/RF321953. (rus).

23. Abdullin V.V., Shnayder D.A., Kurzanov S. Yu., Yavorovsky Yu. V. IoT technology applications to building heating: predictive control, distributed monitoring, smart hydraulic balancing. Plumbing, Heating, Air conditioning. 2018. Vol. 200. No. 8. Pp. 54-58. (rus).

24. Krūmiņš, A., Bogdanovs, N., Beļinskis, R., Mežale, K., Garjāns, M. Increasing Buildings Automation Systems Efficiency with Real-Time Simulation Trough Improved Machine Self-learning Algorithms. Springer Proceedings in Energy. 2019. Pp. 41-49. doi:10.1007/978-3-030-00662-4_4

25. Su B., Wang S., Li W. Impacts of uncertain information delays on distributed real-time optimal controls for building HVAC systems deployed on IoT-enabled field control networks. Applied Energy. 2021. Vol. 300. Pp. 117383.

26. Şahin A. Ş. Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy. Renewable energy. 2011. Vol. 36. No. 10. Pp. 2747-2752.

27. Pérez-Gomariz M., López-Gómez A., Cerdán-Cartagena F. Artificial neural networks as artificial intelligence technique for energy saving in refrigeration systems — A review. Clean Technologies. 2023. Vol. 5. No. 1. Pp. 116-136.

28. Zhang Y., Zhou Z., Liu J., Yuan J. Data augmentation for improving heating load prediction of heating substation based on TimeGAN. Energy. 2022. Vol. 260. Pp. 124919.

29. Li C., Cui C., Li M. A proactive 2-stage indoor CO2-baswd demand-controlled ventilation method considering control performance and energy efficiency. Applied Energy. 2023. Vol. 329. Pp. 120288.

30. Zhao Y., Li T., Zhang X., Zhang C. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renewable and Sustainable Energy Reviews. 2019. Vol. 109. Pp. 85-101.

31. Taheri S., Ahmadi A., Mohammadi-Ivatloo B., Asadi S. Fault detection diagnostic for HVAC systems via deep learning algorithms. Energy and Buildings. 2021. Vol. 250. Pp. 111275.

32. Yang S., Wan M. P., Ng B. F., Dubey S., Henze G. P., Chen W., Baskaran K. Model predictive control for integrated control of air-conditioning and mechanical ventilation, lighting and shading systems. Applied Energy. 2021. Vol. 300. No. 12. Pp. 117325.


Review

For citations:


Shubin I.L., Strongin A.S., Razakov M.A. The use of artificial intelligence to control the engineering equipment of buildings. Building and Reconstruction. 2024;(5):138-148. (In Russ.) https://doi.org/10.33979/2073-7416-2024-115-5-138-148

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)