Preview

Building and Reconstruction

Advanced search

Standardized values of the failure probability of building structures

https://doi.org/10.33979/2073-7416-2024-115-5-70-81

Abstract

Taking into account the variable nature of load-bearing capacity and loads, checking the design reliability of building structures leads to ensuring that the probability of occurrence of the limit state should not exceed the target (permissible) value. This method is known as the probabilistic limit state verification method. There are simpler methods for checking limit states for engineering calculations, the most popular of which is the method of reliability factors. However, all existing methods for checking limit states and, accordingly, methods for ensuring the design reliability of building structures are based on the probabilistic method. For this reason, research and the normative consolidation of acceptable failure probabilities are one of the primary tasks of the scientific community and national authorities in the field of developing norms and rules. Based on an analytical review of the research, a description of the probability of failure and the reliability index as measures of design reliability is presented and provisions are fixed on the basis of which it is necessary to assign a target value for the probability of failure, including direct and indirect consequences of failure.

The conditions for assigning target failure probabilities in regulatory documents are systematized and the results of comparing the numerical values of reliability indices are presented. The most complete methodology for determining the target values of the probability of failure is set out in the international standard ISO 2394. This standard contains guidelines for determining target reliability indices based on economic optimization, analysis of individual or public risk, as well as the quality of life index. However, this methodology, and in particular the numerical values of reliability indices, require adaptation taking into account the economic characteristics of a particular country.

About the Author

V. V. Nadolski
Brest State Technical University; Belarusian National Technical University
Belarus

Nadolski Vitali V., candidate of technical science (PhD), docent, associated professor of the department of Building constructions; Associate Professor of the Department of Building Structures

 Brest



References

1. Mitasov V.M., Adishchev V.V., Stacenko N.V. Koncepciya predel'nyh sostoyanij i ih prover-ka po rossijskim normam i Evrokodam [The concept of limit states and their verification according to Russian norms and Eurocodes] Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2017. Vol.8. P. 15-23. (rus)

2. Harchenko A.O., Harchenko A.A., Vladeckaya E.A. Ispol'zovanie veroyatnostnyh metodov ocenki nadezhnosti tekhnicheskih ob"ektov na primere tekhnologicheskih i avtomobil'nyh sistem [The use of probabilistic methods for assessing the reliability of technical objects on the example of technological and automotive systems] Mir transporta i tekhnologicheskih mashin. 2019. Vol. 4(67). P. 3-10. (rus)

3. Gerasimov E.P. Ispol'zovanie veroyatnostnyh metodov dlya vychisleniya normativnoj nadezhnosti po treshchinostojkosti zhelezobetonnyh izgibaemyh elementov [The use of probabilistic methods for calculating the normative reliability of crack resistance of reinforced concrete bendable elements] Vestnik Sibirskogo gosu-darstvennogo universiteta putej soobshcheniya. 2018. Vol. 1(44). P. 55-60. (rus)

4. Mkrtychev O.V., YUr'ev R.V. Ocenka nadezhnosti konsol'noj plity pri dejstvii povtoryayu-shchihsya zemletryasenij [Assessment of the reliability of a cantilever plate under the action of repeated earthquakes] Vestnik MGSU. 2010. Vol. 3. P. 147-151. (rus)

5. Tamrazyan A.G., Filimonova E. A. Kriterii formirovaniya kompleksnoj celevoj funkcii zhelezobetonnoj plity s uchetom analiza riska [Criteria for the formation of a complex target function of a reinforced concrete slab taking into account risk analysis] Vestnik MGSU. 2013. Vol. 10. P. 68-74. (rus)

6. Mkrtychev O.V., Rajzer V.D. Teoriya nadezhnosti v proektirovanii stroitel'nyh konstrukcij [Theory of reliability in the design of building structures] / Mkrtychev O.V., Rajzer V. D. - Moskva : Izdatel'stvo ASV, 2016. 908 p. (rus)

7. Rajzer V.D. Ocherk razvitiya teorii nadezhnosti i norm proektirovaniya stroitel'nyh kon-strukcij [An essay on the development of the theory of reliability and standards of design of construction structures ] Sejsmostojkoe stroitel'stvo i bezopasnost' sooruzhenij. 2014. No2. P. 29-35. (rus)

8. Tamrazyan A.G. Beton i zhelezobeton – problemy i perspektivy [Concrete and reinforced concrete – problems and prospects] Promyshlennoe i grazh-danskoe stroitel'stvo. 2014. Vol.8. P. 30-33. (rus)

9. Utkin V.S., Solov'ev S.A., YArygina O.V. Raschet nesushchih elementov konstrukcij po zadan-nomu znacheniyu nadezhnosti pri nepolnoj statisticheskoj informacii [Calculation of load-bearing structural elements according to a given reliability value with incomplete statistical information] Stroitel'stvo i rekonstrukciya. 2020. Vol. 1(87). P. 81 91. DOI: 10.33979/2073-7416-2020-87-1-81-91. (rus)

10. Diamantidis D., Holický M., Sýkora M. Reliability and Risk Acceptance Criteria for Civil Engineering Structures. Transactions of the VŠB - Technical University of Ostrava Civil Engineering Series. 2016. Vol. 16. P. 1-10. DOI: 10.1515/tvsb-2016-0008.

11. Diamantidis D., Sykora M. Reliability differentiation and uniform risk in standards: a critical review and a practical appraisal. Future Trends in Civil Engineering. 2019. P.242-260. DOI: 10.5592/CO/FTCE.2019.11.

12. Hingorani R., Tanner P., Prieto M., Lara C. Consequence classes and associated models for predicting loss of life in collapse of building structures. Structural Safety. 2020. 85. DOI: 10.1016/j.strusafe.2019.101910

13. Vrouwenvelder A. C. W. M. Target reliability as a function of the design working life . Structural engineering international. 2010. P. 62-65.

14. Tur V.V., Tur A.V., Derechennik S.S. O naznachenii trebuemyh mer nadezhnosti pri razra-botke nacional'nyh normativnyh dokumentov po proektirovaniyu stroitel'nyh konstrukcij [On the appointment of required reliability measures in the development of national regulatory documents on the design of building structures]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. Vol. 1. P. 2–15. Doi: 10.36773/1818-1212-2020-119 1-2-15. (rus)

15. Holicky M., Diamantidis D., Sykora M. Reliability levels related to different reference periods and consequence classes. Beton- und Stahlbetonbau. 2018. Vol. 113. P. 22-26. DOI: 10.1002/best.201800039

16. Baravalle M., Köhler J. A risk-based approach for calibration of design codes. Structural Safety. 2019. Vol. 78. p. 63-75.

17. Meinen N.E., Steenbergen R.D.J.M. Reliability levels obtained by Eurocode partial factor design - A discussion on current and future reliability levels. Heron. 2018. Vol. 63. No. 3. pp. 243-301.

18. Tur V. V., Nadol'skij V. V. Celevye znacheniya pokazatelej proektnoj nadezhnosti v ramkah koncepcii nadezhnosti, prinyatoj v evropejskih normah (Evrokodah) [Target values of design reliability indicators within the framework of the reliability concept adopted in European standards (Eurocodes) ] . Problemy sovremennogo betona i zhelezobetona. 2015. Vyp. 7. P. 178 – 192. (rus)

19. Nadol'skij V.V., Tur V.V. Kalibrovka (opredelenie) chastnogo koefficienta dlya snegovoj nagruzki pri raschetah stal'nyh konstrukcij [Calibration (determination) of the partial coefficient for snow load in calculations of steel structures] Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. Vol. 1(79). P. 169–172. (rus)

20. Nadol'skij V.V., Martynov YU.S. Ocenka trebuemogo (celevogo) urovnya nadezhnosti na os-novanii predydushchego opyta normirovaniya [Assessment of the required (target) level of reliability based on previous rationing experience ] . Vestnik Polockogo gosudarstvennogo universiteta. 2014. Vol. 8. P. 27–34. (rus)

21. Nadol'skij V.V., Golicki M., Sikora M., Tur V.V. Sopostavlenie urovnej nadezhnosti, obespechivaemyh normami Rossijskoj Federacii i Evrosoyuza [Comparison of reliability levels provided by the norms of the Russian Federation and the European Union] . Vestnik MGSU. 2013. Vol. 6. P. 7–20. DOI: 10.22227/1997-0935.2013.6.7-20. (rus)

22. Nadolski V.V., Holický M., Sýkora M. Comparison of the reliability levels provided by Eurocodes and by standards of the Republic of Belarus . Vestnik MGSU. 2013. Vol. 2. С. 7–21.

23. Ditlevsen O., Friis-Hansen P. Life Quality Index an empirical or a normative concept? International Journal of of Risk Assessment and Management. 2007. Vol. 7. P. 895 - 921. DOI: 10.1504/IJRAM.2007.014666.

24. Pandey M.D., Nathwani J. Life Quality Index for the Estimation of Societal Willingness-to-Pay for Safety. Structural Safety. 2004. Vol. 26. 181-199. DOI: 10.1016/j.strusafe.2003.05.001.

25. Holický M. Optimisation of the target reliability for temporary structures . Civil Engineering and Environmental Systems. 2013. Vol. 30. No. 2. P. 87-96.

26. Allen D.E. Limit states criteria for structural evaluation of existing buildings. Canadian Journal of Civil Engineering. 1991. Vol. 18. No. 6, P. 995-1004.

27. Steenbergen R., Sýkora M., Diamantidis D., Holický M. Economic and human safety reliability levels for existing structures . Structural Concrete. 2015. Vol. 16. No. 3. P. 323-332.

28. Fischer K., Virguez E., Sánchez-Silva M., Faber M.H. On the assessment of marginal life saving costs for risk acceptance criteria. Structural Safety. 2013. Vol. 44. P. 37–46. doi: 10.1016/j.strusafe.2013.05.00.

29. Tanner P., Hingorani R. Acceptable risks to persons associated with building structures. Structural Concrete. 2015. Vol. 16(3). Pp. 314-22.

30. Sýkora M., Diamantidis D., Holický M., Jung K. Target Reliability for Existing Structures Considering Economic and Societal Aspects . Structure and Infrastructure Engineering. 2017. Vol. 13. No. 1. P. 181-194.

31. Eldukair Z.A., Ayyub B.M. Analysis of recent U.S. structural and construction failures . Journal of Performance of Constructed Facilities. 1991. Vol. 5. No. 1. P. 57-73.

32. Steenbergen R.D.J.M., Vrouwenvelder A.C.W.M. Safety philosophy for existing structures and partial factors for traffic loads on bridges. Heron. 2010. Vol. 55(2). P. 123 – 139.

33. Vrijling J.K., van Gelder P.H.A.J.M., Ouwenkerk S.J. Criteria for acceptable risk in the Netherlands. Infrastructure Risk Management Processes. 2005. pp. 143-157. DOI: 10.1061/9780784408155.ch05.

34. Vrouwenvelder T., Scholten N. Assessment criteria for existing structures . Structural Engineering International. 2010. Vol. 20. No. 1, pp. 62-65.

35. Aven T., Heide B. Reliability and validity of risk analysis. Reliability Engineering & System Safety. 2009. Vol. 94(11). P. 1862-1868. DOI: 10.1016/j.ress.2009.06.003

36. Cornell C., Jalayar F., Hamburger R., Foutch D. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines. Journal of Structural Engineering ASCE. 2002. Vol. 128(4). p. 526–533.


Review

For citations:


Nadolski V.V. Standardized values of the failure probability of building structures. Building and Reconstruction. 2024;(5):70-81. (In Russ.) https://doi.org/10.33979/2073-7416-2024-115-5-70-81

Views: 66


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)