Preview

Building and Reconstruction

Advanced search

Secant modulus ratio for reconstructable reinforced concrete

https://doi.org/10.33979/2073-7416-2024-115-5-61-69

Abstract

The relationship between the strength of concrete and tangent modulus gets broken during its prolonged usage, so deformation curves matching the changes that occurred are required for the calculation of reinforced concrete structures. The formula based on the Arrenius equation enables the creation of concrete deformation model based on experimental data. Such model matches the criteria set. For validation of the model adequacy the results of comparing the model being proposed with the concrete deformation model used in the standards for different concrete classes are presented in graphical and tabular form. The results obtained confirm the adequacy of the deformation model proposed.

About the Author

V. G. Murashkin
Samara State Technical University
Russian Federation

Murashkin Vasiliy G., candidate in tech. sc., docent

Samara



References

1. SP 255.1325800.2016. Zdaniya i sooruzheniya. Pravila ekspluatacii. Osnovnye polozheniya [Buildings and structures. Operating rules. Basic provisions]. (rus).

2. Mushtaq Sadiq Radhi, Shakir Ahmed Al-Mishhadani, Hasan Hamodi Joni. Effect of Age on Concrete Core Strength Results The 2nd International Conference of Buildings, Construction and Environmental Engineering (BCEE2-2015). [Online] URL: https://www.researchgate.net/publication/307858837.

3. Selyaev, V.P., Nizina T.A. Otsenka dolgovechnosti zhelezobetonnykh konstruktsij s primeneniem metoda degradatsionnykh funktsij [Evaluation of the durability of reinforced concrete structures using the method of degradation functions]. Vtoroj mezhdunarodnyj simpozium «Problemy sovremennogo betona i zhelezobetona» The Second International Symposium «Problems of Modern Concrete and Reinforced Concrete». Minsk. 2009. Pp. 369–385. (rus).

4. Bazhenov Y.M., Murashkin V.G. Uchet izmeneniya prochnosti betona pri proektirovanii zhelezobetonnykh konstruktsij [Taking into account changes in concrete strength when designing reinforced concrete structures ] Vestnik Volzhskogo regional'nogo otdeleniya Rossijskoj akademii arkhitektury i stroitel'nykh nauk. 2017. № 20. Pp. 244-251. (rus).

5. Geniev G.A. Zavisimost' prochnosti betona ot vremeni [Dependence of concrete strength on time] Beton i zhelezobeton. 1993. № 1. Pp. 15-17. (rus).

6. Petrov V.V. K voprosu postroeniya modelej rascheta dolgovechnosti konstruktsij [On the issue of constructing models for calculating the durability of structures] Sb. Dolgovechnost' stroitel'nykh materialov, izdelij i konstruktsij. Saransk: SGU. 2014. Pp. 136-144. (rus).

7. Kaprielov S. S., Shejnfel'd A.V., Travush V.I., Karpenko N.I., Krylov S.B. [Assessment of Strength and Deformation Characteristics of High-Strength Concrete in Structures and the Dynamics of Their Changes over Time] Ocenka prochnostnyh i deformacionnyh harakteristik vysokoprochnyh betonov v konstrukciyah i dinamiki ih izmeneniya vo vremeni Stroitel'nye materialy. 2023. № 11. Pp. 28-38. (rus).

8. Travush V. I., Murashkin V.G. Concrete Deformation Model for Reconstructed Reinforced Concrete International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18, No. 4. Pp. 132-137.

9. SP 63.13330.2018 Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozheniya [Concrete and reinforced concrete structures. Basic provisions] (rus).

10. Zeger A. Vozniknovenie defektov reshetki pri dvizhenii dislokacij i ih vliyanie na temperaturnuyu zavisimost' deformiruyushchih napryazhenij GCK kristallov [The emergence of lattice defects during the motion of dislocations and their influence on the temperature dependence of the deforming stresses of FCC crystals] Problemy sovremennoj fiziki. Dislokacii v kristallah. Moscow. Izd-vo inostrannoj literatury. 1960. Pp. 179-268.

11. Potapova L.B., Yarcev V.P. Mekhanika materialov pri slozhnom napryazhennom sostoyanii [Mechanics of materials under complex stress state] Moscow. Mashinostroenie – 1. 2005. 244p. (rus).

12. Poluhin P.I., Gorelik S.S., Voroncov V.K. Fizicheskie osnovy plasticheskoj deformacii [Physical basis of plastic deformation] Moscow. «Metallurgiya». 1982. 584p. (rus).

13. Bajkov V.N., Gorbatov C.V., Dimitrov Z.A. Postroenie zavisimosti mezhdu napryazheniyami i deformacii szhatogo betona po sisteme normiruemyh pokazatelej [Construction of the relationship between stresses and deformations of compressed concrete using a system of standardized indicators] Izvestiya vuzov. Stroitel'stvo i arhitektura. – 1977. - №6.- Pp.15-18. (rus).

14. Murashkin G.V., Murashkin V.G Modelirovanie diagramm deformirovaniya betona [Concrete stress strain diagrams modeling] Izvestiya Orlovskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Stroitel'stvo i transport. 2007. № 2 (14). Pp. 86-88. (rus).


Review

For citations:


Murashkin V.G. Secant modulus ratio for reconstructable reinforced concrete. Building and Reconstruction. 2024;(5):61-69. (In Russ.) https://doi.org/10.33979/2073-7416-2024-115-5-61-69

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)