Preview

Building and Reconstruction

Advanced search

Structural robustness: an analytical review

https://doi.org/10.33979/2073-7416-2024-113-3-31-71

Abstract

 The problem of robustness of structural systems of buildings and structures is receiving more and more attention in the publications of Russian and foreign authors. In this regard, the presented review article is aimed at systematizing, summarizing and analyzing new research results on issues related to the development of calculation models of static, dynamic and static-dynamic resistance of buildings structural systems under conditions of special and emergency impacts, as well as criteria, used when testing their robustness in special design situations, seems relevant. To achieve this goal, a critical review and analysis of foreign and domestic publications is provided on the issues of formulation and conceptual approaches to assessing the mechanical safety of buildings and structures at the stages of the life cycle of buildings and in emergency situations, force and environmental resistance factors of buildings structural systems under dynamic loads in emergency situations as well as calculation models of the resistance of load-bearing.

Particular attention in the scientific review is paid to the analysis of works related to assessing the robustness of buildings structural systems using semi-probability (deterministic), probabilistic methods and risk assessment methods. The main conclusions and possible directions for the development of these studies are formulated in the conclusion of the article.

About the Authors

V. I. Kolchunov
Moscow State University of Civil Engineering
Russian Federation

Kolchunov Vitaly I. - Full member of RAACS, Doctor of Tech. Sc., Professor, Professor of the Department of Reinforced Concrete and Masonry Structures

Moscow



T. A. Iliushchenko
Kursk State University; Moscow State University of Civil Engineering
Russian Federation

Iliushchenko Tatiana A. - Senior Lecturer of the Department of Industrial and Civil Engineering construction (Kursk); Head of the Department of Technical Standardization in the field of construction (Moscow)



N. V. Fedorova
Moscow State University of Civil Engineering
Russian Federation

Fedorova Natalia V. - Advisor of RAACS, Doctor of Technical Sciences, Professor, Head of the Department of Industrial and Civil Engineering 

 Moscow



S. Y. Savin
Moscow State University of Civil Engineering
Russian Federation

Savin Sergei Y. - candidate of technical science, associate professor of the department of Reinforced Concrete and Masonry Structures

Moscow



V. V. Tur
Brest State Technical University
Belarus

Tur Viktar V. - doctor of technical sciences, Professor, Head the Department of Concrete Technology and Construction Materials

Brest 



A. A. Lizahub
Brest State Technical University
Belarus

Lizahub Aliaksandr Al. - master of eng. science, junior research fellow of BL «RCIC» 

Brest



References

1. Kolchunov V.I., Fedorova N.V. Nekotorye problemy zhivuchesti zhelezobetonnyh konstruktivnyh sistem pri avarijnyh vozdejstviyah [Some problems of survivability of reinforced concrete structural systems under emergency impacts] // Bulletin of the Scientific Research Center Construction. 2018. No. 1. pp. 115-119. (rus)

2. Fedorova N.V., Savin S.YU. Progressive collapse resistance of facilities experienced to localized structural damage - an analytical review // Building and Reconstruction. 2021. Vol. 95, No 3. Pp. 76–108.

3. Kiakojouri F., De Biagi V., Chiaia B., Sheidaii M. R. Progressive collapse of framed building structures: Current knowledge and future prospects // Engineering Structures. 2020. No December 2019 (206). C. 110061.

4. Bondarenko V. M., Kolchunov V. I. Ekspoziciya zhivuchesti zhelezobetona [Exposition of the survivability of reinforced concrete] // News of higher educational institutions. Construction. 2007. No. 5. pp. 4-8. (rus)

5. Kolchunov V.I., Klyueva N.V., Androsova N.V., Bukhtiyarova A.S. ZHivuchest' zdanij i sooruzhenij pri zaproektnyh vozdejstviyah [Survivability of buildings and structures under beyond-design influences]. M.: ASV Publishing House, 2014. 208 p. (rus)

6. Tamrazyan A.G. Konceptual'nye podhody k ocenke zhivuchesti stroitel'nyh konstrukcij, zdanij i sooruzhenij [Conceptual approaches to assessing the survivability of building structures, buildings and structures] // Reinforced Concrete Structures.2023. T. 3. No. 3. P. 62–74. (rus)

7. Almazov V. O. Khoi Khao Zui. Dinamika progressiruyushchego razrusheniya monolitnyh mnogoetazhnyh karkasov [Dynamics of progressive destruction of monolithic multi-story frames]. M.: Publishing House ASV. - 2013-128p. (rus)

8. Hadi M. N. S., Alrudaini T. M. S. Preventing the progressive collapse of reinforced concrete buildings // International Conference on Civil, Structural and Environmental Engineering Computing. 2011. P. 1-12.

9. Mohamed O., Al Khattab R., Mishra A., Isam, F. Recommendations for reducing progressive collapse potential in flat slab structural systems //IOP Conference Series: Materials Science and Engineering. 2019. Т. 471. №. 5. P. 052069.

10. Hammad K., Lofty I., Naiem M. Enhancing Progressive Collapse Resistance in Existing Buildings // Design and Construction of Smart Cities. 2021. P. 39-46.

11. Yihai Bao, Sashi K Kunnath, Sherif El-Tawil, Hai S Lew. Macromodel-based-based simulation of progressive collapse: reinforced concrete frame structures // Journal of Structural Engineering. 2008, Vol. 134, No. 7. P. 1079-1091.

12. Mohajeri Nav F. Analytical investigation of reinforced concrete frames under middle column removal scenario // Adv. Struct. Eng. 2018. № 21.9 P. 1388–1401.

13. Ahmadi R., Rashidian O., Abbasnia R., Mohajeri Nav F., Usefi N. Experimental and numerical evaluation of progressive collapse behavior in scaled RC beam-column subassemblage //Shock and Vibration. 2016. Т. 2016.

14. Geniev G.A., Kolchunov V.I., Klyueva N.V. Prochnost' i deformativnost' zhelezobetonnyh konstrukcij pri zaproektnyh vozdejstviyah [Strength and deformability of reinforced concrete structures under beyond-design influences]. M.: ASV, 2004. 216 p. (rus)

15. Thaer M., Alrudaini S. and Muhammad, N. S. H. A New Design to Prevent Progressive Collapse of Reinforced Concrete Buildings // The 5th Civil Engineering Conference in The Asian Region and Australasian Structural Engineering Conference, 2010.

16. Travush V.I. Shapiro G.I. Kolchunov V.I. Leontyev E.V. Fedorova N.V. Proektirovanie zashchity krupnopanel'nyh zdanij ot progressiruyushchego obrusheniya [Design of protection of large-panel buildings from progressive collapse] // Housing Construction. 2019. No 3. Pp. 40-46. (rus)

17. Azim I., Yang J., Bhatta S., Wang F., Liu Q. F. Factors influencing the progressive collapse resistance of RC frame structures //Journal of Building Engineering. 2020. Т. 27. С. 100986.

18. Eremin K. I., Matveyushkin S. A. Osobennosti ekspertizy i NK metallicheskih konstrukcij ekspluatiruemyh sooruzhenij [Features of examination and NDT of metal structures of operated structures] // In the world of non-destructive testing. 2008. No. 4. pp. 4-7.

19. SP 296.1325800.2017. Zdaniya i sooruzheniya. Osobye vozdejstviya [Buildings and structures. Special Impacts]. 2018 (rus)

20. SP 385.1325800. 2018. Zashchita zdanij i sooruzhenij ot progressiruyushchego obrusheniya. Pravila proektirovaniya. Osnovnye polozheniya [Protection of buildings and structures from progressive collapse. Design rules. The main provisions]. M.: Standartinform, 2018. P. 19 (rus)

21. ASCE 76-23. Standard for Mitigation of Disproportionate Collapse Potential in Buildings and Other Structures. - American Society of Civil Engineers. 2023

22. GSA (General Services Administration). Alternate path analysis and design guidelines for progressive collapse resistance (Revision). - General Services Administration. 2016

23. BS EN 1991-1-7:2006 Eurocode 1. Actions on structures. General actions. Accidental actions. Comite Europeen de Normalisation (2002), Draft pr EN 1992-1-1

24. Bondarenko V.M., Borovskikh A.V. Iznos, povrezhdeniya i bezopasnost' zhelezobetonnyh sooruzhenij [Wear, damage and safety of reinforced concrete structures]. – M.: Rusanova Publishing House, 2000. 144 p. (rus)

25. Kolchunov V.I., Kolchunov V.I., Fedorova N.V. Deformacionnye modeli zhelezobetona pri osobyh vozdejstviyah [Deformation models of reinforced concrete under special influences] // Industrial and civil construction. 2018. No. 8. pp. 54-60. (rus)

26. Bondarenko V.M., Kolchunov V.I. Raschetnye modeli silovogo soprotivleniya zhelezobetona [Calculation models of force resistance of reinforced concrete]. Moscow: ASV Publishing House. 2004. 472 p. (rus)

27. Golyshev A.B. Bachinsky V.Ya., Polishchuk V.P. ZHelezobetonnye konstrukcii. Soprotivlenie zhelezobetona [Reinforced concrete structures. Resistance of reinforced concrete]. T.1. K.: Logos, 2001. 481 p. (rus)

28. Rastorguev B.S., Plotnikov A.I. Obespechenie zhivuchesti grazhdanskih zdanij pri osobyh vozdejstviyah [Ensuring the survivability of civil buildings under special influences] // Thematic scientific-practical conference “City construction complex and the safety of life support for citizens”: collection. reports. M.: MGSU, 2005. 9-10 (rus)

29. Orton S. Development of a CFRP System to Provide Continuity in Existing Reinforced Concrete Buildings Vulnerable to Progressive Collapse, Dissertation, 2007

30. Kim J. and Yu J. Analysis of Reinforced Concrete Frames Subjected to Column Loss // Magazine of Concrete Research. 2012. V.64(1), pp. 21-33

31. D3–1: Design recommendations against progressive collapse in steel and steel-concrete buildings. European Convention for Constructional Steelwork (ECCS). FAILNOMORE. – 2021.

32. GOST 27.002-89.9. Nadezhnost' v tekhnike. Terminy i opredeleniya [Reliability in technology. Terms and Definitions]. M.: IPK Publishing House of Standards, 1990. 38 p. (rus)

33. Makhutov N. A., Petrov V. P., Reznikov D. O. Ocenka zhivuchesti slozhnyh tekhnicheskih sistem [Assessment of the survivability of complex technical systems] // Problems of safety and emergency situations. 2009. – No. 3. – pp. 47-66. (rus)

34. Raiser V. D. Raschet i normirovanie nadezhnosti stroitel'nyh konstrukcij [Calculation and standardization of reliability of building structures]. M.: Stroyizdat, 1995. 348 p. (rus)

35. Antseliovich L. L. Nadezhnost', bezopasnost' i zhivuchest' samoleta [Reliability, safety and survivability of the aircraft] // M.: Mechanical Engineering. 1985. – T. 3985. – P. 296 (rus)

36. Bolotin V.V. Primenenie metodov teorii veroyatnostej i teorii nadezhnosti v raschetah sooruzhenij [Application of methods of probability theory and reliability theory in the calculations of structures]. M.: Stroyizdat, 1971. (rus)

37. Tur V.V., Nadolsky V.V. Koncepciya proektirovaniya stroitel'nyh konstrukcij na osnove chislennyh modelej soprotivleniya [The concept of designing building structures based on numerical resistance models] // Construction and Reconstruction. 2022. No. 6. P. 78-90 (rus)

38. Bassam A. Izzuddin, Miguel F. Pereira, Ulrike Kuhlmann, Lars Rölle, Ton Vrouwenvelder, Bernt J. Leira, Application of Probabilistic Robustness Framework: Risk Assessment of Multi-Storey Buildings under Extreme Loading // Struct. Eng. Int. 2012. 22(1). 79-85.

39. Ellingwood B R. Mitigating risk from abnormal loads and progressive collapse // J. Perform. Constr. Fac. 2006. 20 (4). 315-323.

40. Biagi V. D., Kiakojouri F., Chiaia B., Sheidaii M. R. A simplified method for assessing the response of RC frame structures to sudden column removal //Applied Sciences. 2020. Т. 10. №. 9. С. 3081.

41. Chen C. H., Zhu Y. F., Yao Y., Huang Y., Long X. An evaluation method to predict progressive collapse resistance of steel frame structures //Journal of Constructional Steel Research. 2016. Т. 122. С. 238-250.

42. Alekseytsev, A.V. Mechanical safety of reinforced concrete frames under complex emergency actions // Magazine of Civil Engineering. 2021. 103(3). Article No. 10306. DOI: 10.34910/MCE.103.6

43. Lizogub A.A., Tur A.V., Tur V.V. Veroyatnostnyj podhod k ocenke zhivuchesti konstruktivnyh sistem iz sbornogo i monolitnogo zhelezobetona [Probabilistic approach to assessing the survivability of structural systems made of prefabricated and monolithic reinforced concrete] // Construction and Reconstruction. 2023. T. 108, No. 4. P. 95 – 107 (rus)

44. Naghavi F., Tavakoli H. R. Probabilistic prediction of failure in columns of a steel structure under progressive collapse using response surface and artificial neural network methods // Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2022. С. 1-17.

45. Cardoso J. B., de Almeida J. R., Dias J. M., Coelho P. G. Structural reliability analysis using Monte Carlo simulation and neural networks //Advances in Engineering Software. 2008. Т. 39. №. 6. С. 505-513.

46. Tur V.V., Tur A.V., Derechennik S.S. Checking of structural system robustness based on pseudo-static full probabilistic approach // Proceedings of the fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures. 2019. Рр. 2126-2133.

47. Dyagtyar A.N. Optimizaciya zhivuchesti konstruktivno nelinejnyh zhelezobetonnyh sterzhnevyh konstrukcij v zapredel'nyh sostoyaniyah [Optimization of the survivability of structurally nonlinear reinforced concrete rod structures in extreme states]: thesis. Orel: [Orlov. State Tech. University], 2005. (rus)

48. Geniev G.A. O principe ekvigradientnosti i primenenii ego k optimizacionnym zadacham ustojchivosti sterzhnevyh sistem [On the principle of equigradience and its application to optimization problems of stability of rod systems] // Structural mechanics and design of structures. 1979. No. 6. pp. 8-13. (rus)

49. Maslennikov A. M. Riski vozniknoveniya prirodnyh i tekhnogennyh katastrof [Risks of natural and man-made disasters]. St. Petersburg, 2008.165p. (rus)

50. Kudzis A.P. Ocenka nadezhnosti zhelezobetonnyh konstrukcij [Reliability assessment of reinforced concrete structures]. Vilnius: Mokslas, 1985. 156 p. (rus)

51. Kotlyarovsky V.A., Zabegaev A.V. Avarii i katastrofy. Preduprezhdenie i likvidaciya posledstvij [Accidents and disasters. Prevention and mitigation of consequences]. KN.5.-M.: ASV, 2011.-414 p. (rus)

52. STB ISO 2394-2007. Nadezhnost' stroitel'nyh konstrukcij. Obshchie principy [Reliability of building structures. General principles Intro]. Minsk: State Standard of the Republic of Belarus, 2007. 69 p. (rus)

53. TKP EN 1990-2011. Osnovy proektirovaniya konstrukcij [Fundamentals of structural design]. Minsk: Ministry of Architecture and Construction of the Republic of Belarus, 2012. 70 p. (rus)

54. Nadolsky V.V., Verevka F.A. Osobennosti opredeleniya znachenij indeksa nadezhnosti dlya raznyh periodov povtoryaemosti [Features of determining the values of the reliability index for different periods of repetition] // Prospective directions of innovative development of construction and training of engineering personnel: collection of scientific articles of the XXI International Scientific and Methodological Seminar. – 2018. P.205-212. (rus)

55. Kolchunov V. I., Tur V. V. Napravleniya proektirovaniya konstruktivnyh sistem v osobyh raschetnyh situaciyah [Directions for designing structural systems in special design situations] // Industrial and civil construction. 2023. No. 7. P. 5-15. (rus)

56. Fu G., Frangopol D. M. Balancing weight, system reliability and redundancy in a multiobjective optimization framework //Structural Safety. 1990. Т. 7. №. 2-4. С. 165-175.

57. Baker J. W., Schubert M., Faber M. H. On the assessment of robustness //Structural safety. 2008. Т. 30. №. 3. С. 253-267.

58. Chen Y., Yang G. P., Xia Q. Y., Wu G. W. Enrichment and characterization of dissolved organic matter in the surface microlayer and subsurface water of the South Yellow Sea //Marine Chemistry. 2016. Т. 182. С. 1-13.

59. Beck A. T., da Rosa Ribeiro L., Costa L. G., Stewart M. G. Comparison of risk-based robustness indices in progressive collapse analysis of building structures //Structures. Elsevier. 2023. Т. 57. С. 105295.

60. Unified Facilities Criteria. Design of buildings to resist progressive collapse (UFC 4-023-03) Washington, DC: Department of Defence (DoD), 2009.

61. Abdelwahed B. A review on building progressive collapse, survey and discussion // Case Studies in Construction Materials. 2019. (11).

62. Qiao H., Yang Y., Zhang J. Progressive Collapse Analysis of Multistory Moment Frames with Varying Mechanisms // Journal of Performance of Constructed Facilities. 2018. № 4 (32). C. 04018043.

63. Almusallam T. H., Elsanadedy H. M., Al-Sallou, Y. A., Siddiqui N. A., Iqbal R. A. Experimental investigation on vulnerability of precast RC beam-column joints to progressive collapse // KSCE Journal of Civil Engineering. 2018. Т. 22. С. 3995-4010.

64. ACI 318-19 Building Code Requirements for Structural Concrete and Commentary American Concrete Institute, 2019

65. Abdelazim W., Mohamed H. M., Benmokrane B. Inelastic Second-Order Analysis for Slender GFRP-Reinforced Concrete Columns: Experimental Investigations and Theoretical Study // Journal of Composites for Construction. 2020. № 3 (24).

66. MacGregor J. G. Design of slender concrete columns - revisited // ACI Structural Journal. 1993. № 3 (90). C. 302–307.

67. Kolchunov V. I., Prasolov N. O., Kozharinova L. V. Experimental and theoretical research on survivability of reinforced concrete frames in the moment of individual element buckling // Vestnik MGSU. 2011. № 3– 2. C. 109–115.

68. GOST 27751-2014 Nadezhnost' stroitel'nyh konstrukcij i osnovanij. Osnovnye polozheniya [Reliability of building structures and foundations. Basic provisions]. Moscow: JSC “Research Center” Construction ", 2019. (rus)

69. Amiri S., Saffari H., Mashhadi J. Assessment of dynamic increase factor for progressive collapse analysis of RC structures // Engineering Failure Analysis. 2018. (84). C. 300–310.

70. Tsai M.-H. An Approximate Analytical Formulation for the Rise-Time Effect on Dynamic Structural Response Under Column Loss // International Journal of Structural Stability and Dynamics. 2018. № 03 (18). C. 1850038.

71. Weng J., Tan K. H., Lee C. K. Adaptive superelement modeling for progressive collapse analysis of reinforced concrete frames // Engineering Structures. 2017. (151). C. 136–152.

72. Gemmerling A.V. Raschet sterzhnevyh sistem [Calculation of rod systems]. M.: Stroyizdat, 1974, 207 p. (rus)

73. Beglov A.D., Sanzharovsky R.S. O metodah resheniya uravnenij polzuchesti betona [On methods for solving concrete creep equations] // Structural mechanics of engineering structures and structures. 2005. No3. pp. 55-63. (rus)

74. Sanzharovsky R. S. Ustojchivost' elementov stroitel'nyh konstrukcij pri polzuchesti [Stability of elements of building structures under creep]. Leningrad: Leningrad University Publishing House, 1984. 217 p. (rus)

75. Sasani M., Sagiroglu S. Progressive Collapse Resistance of Hotel San Diego // Journal of Structural Engineering. 2008. № 3 (134). C. 478–488.

76. Gemmerling A.V. Nesushchaya sposobnost' sterzhnevyh stal'nyh konstrukcij [Bearing capacity of rod steel structures]. Moscow: Gosstroyizdat, 1958. 216 p. (rus)

77. Perelmuter A. V. Using the criterion of resistibility to assess of a structural limit state // Vestnik MGSU. 2021. № 12. C. 1559–1566.

78. Alexandrov A. V., Travush V. I., Matveev A. V. O raschete sterzhnevyh konstruktsiy na ustoychivost’ // Industrial and Civil Engineering. 2002. № 3. C. 16–19.

79. Trekin N. N., Kodysh E. N. Special Limit Condition Of Reinforced Concrete Structures And Its Normalization // Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2020. № 5. C. 4–9.

80. Tur A.V. Soprotivlenie izgibaemyh zhelezobetonnyh elementov pri vnezapnom prilozhenii nagruzki [Resistance of bending reinforced concrete elements under sudden application of load]: dis. Ph.D. tech. Sciences: spec. 05.23.01. Brest, 2012 (rus)

81. Shi F., Wang L., Dong S. Progressive collapse assessment of the steel moment-frame with composite floor slabs based on membrane action and energy equilibrium //The Open Construction & Building Technology Journal. 2017. Т. 11. №. 1.

82. Belostotsky A. M., Akimov P. A., Dmitriev D. S., Nagibovich A. I., Petryashev N. O., Petryashev S. O. Raschetnoe issledovanie parametrov mekhanicheskoj bezopasnosti vysotnogo (404 metra) zhilogo kompleksa «One Tower» v delovom centre «Moskva-Siti» [Calculation study of the mechanical safety parameters of a high-rise (404 meters) residential complex " One Tower" in the Moscow City business center] //Academia. Architecture and construction. 2019. no. 3. pp. 122-129. (rus)

83. Belostotsky A. M., Akimov P. A., Aul A. A., Dmitriev D. S., Dyadchenko Yu. N., Nagibovich A. I. Raschetnoe obosnovanie mekhanicheskoj bezopasnosti stadionov k CHempionatu mira po futbolu 2018 goda [Calculation justification for the mechanical safety of stadiums for the World Cup 2018] //Academia. Architecture and construction. 2018. no. 3. pp. 118-129. (rus)

84. Travush V.I., Belostotsky A.M., Vershinin V.V., Ostrovsky K.I., Petryashev N.O., Petryashev S.O. CHislennoe modelirovanie fizicheski nelinejnoj dinamicheskoj reakcii vysotnyh zdanij pri sejsmicheskih vozdejstviyah urovnya MRZ [Numerical modeling of physically nonlinear dynamic response of high-rise buildings under seismic impacts at the MSE level] // International Journal for Computational Civil and Structural Engineering. 2016. No. 12(1). pp. 117-139. (rus)

85. Perelmuter A.V., Kriksunov E.Z., Mosina N.V. Realizaciya rascheta monolitnyh zhilyh zdanij na progressiruyushchee (lavinoobraznoe) obrushenie v srede vychislitel'nogo kompleksa “SCAD Office” [Implementation of the calculation of monolithic residential buildings for progressive (avalanche-like) collapse in the environment of the SCAD Office computer complex] // Engineering and Construction Journal. 2009. T. 4. No. 2. P. 13–18. (rus)

86. Marchis A. G., Botez M. D. A numerical assessment of the progressive collapse resistance of RC frames with respect to the number of stories //Procedia Manufacturing. 2019. Т. 32. P. 136-143.

87. Marjanishvili S. and Agnew E. Comparison of Various Procedures for Progressive Collapse Analysis // Journal of Performance of Constructed Facilities. 2006. Vol. 20, No. 4, pp. 365-374

88. Kaewkulchai G. Beam element formulation and solution procedure for dynamic progressive collapse analysis / G. Kaewkulchai, E.B. Williamson // Computers & Structures. 2004. T. 82. № 7-8. C.639-651.

89. Izzuddin B.A., Vlassis A. G., Elghazouli A. Y., Nethercot D. A. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework // Engineering structures. 2008. T. 30. № 5. ‒ C.1308-1318.

90. Vlassis A.G., Izzuddin B. A., Elghazouli A. Y., Nethercot D. A. Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application // Engineering Structures. 2008. T. 30. № 5. C.1424-1438.

91. Mckay A.E. Alternative Path Method in Progressive Collapse Analysis: Variation of Dynamic and NonLinear Load Increase Factors / M.Sc., the University of Texas at San Antonio, 2008.

92. Mohamed, O. A. Assessment of Progressive Collapse Potential in Corner Floor Panels of Reinforced Concrete Buildings // Engineering Structures.2009. Vol. 31

93. Brian I. S. Experimental and Analytical Assessment on the Progressive Collapse Potential of Existing Buildings // Master Thesis, Ohio State University. 2010, USA

94. Fu F. Progressive Collapse Analysis of High-Rise Building With 3-D Finite Element Modeling Method // Journal of Constructional Steel Research. 2009. pp.1269-1278.

95. Salem H. M. Computer-Aided Design of Framed Reinforced Concrete Structures Subjected to Flood Scouring // Journal of American Science. 2011. 7(10), pp. 191-200

96. Kwasniewski L. Nonlinear dynamic simulations of progressive collapse for a multistory building // Engineering Structures. 2010. T. 32. № 5. C.1223-1235

97. Savin S.Yu., Kolchunov V.I., Fedorova N.V. Raschet ustojchivosti zhelezobetonnyh karkasov zdanij pri osobyh vozdejstviyah [Calculation of the stability of reinforced concrete frames of buildings under special influences] // Industrial and civil construction. 2023. N 9. pp. 12-21. DOI: 10.33622/0869-7019.2023.09.12-21 (rus)

98. Bondarenko V.M., Migal R.E., Yagupov B.A. Rezervy i ekspoziciya konstruktivnoj bezopasnosti zdanij, ekspluatiruyushchijsya v agressivnoj srede [Reserves and exposure to the structural safety of buildings operating in an aggressive environment] // Construction and reconstruction. 2014. No. 1. P. 3–10 (rus)

99. Bondarenko V. M., Kolchunov V. I. Koncepciya i napravleniya razvitiya teorii konstruktivnoj bezopasnosti zdanij i sooruzhenij pri silovyh i sredovyh vozdejstviyah [Concept and directions of development of the theory of structural safety of buildings and structures under power and environmental influences] // Industrial and civil construction. 2013. No. 2. pp. 28-31. (rus)

100. Galustov K.Z. Razvitie teorii polzuchesti betona i sovershenstvovanie metodov rascheta zhelezobetonnyh konstrukcij [Development of the theory of concrete creep and improvement of methods for calculating reinforced concrete structures] / Abstract of the dissertation for the degree of Doctor of Technical Sciences, Moscow, 2008 (rus)

101. Golyshev A.B., Kolchunov Vl.I. Soprotivlenie zhelezobetona [Resistance of reinforced concrete]. Kyiv: Osnova, 2009. 432 p. (rus)

102. Androsova N.B., Kolchunov V.I., Emelyanov S.G. Neravnovesnye i nelinejnye processy pri ocenke potenciala zhivuchesti zhelezobetonnyh konstruktivnyh sistem v zapredel'nyh sostoyaniyah [Nonequilibrium and nonlinear processes in assessing the survivability potential of reinforced concrete structural systems in extreme states] // Structural mechanics of engineering structures and structures. 2022. T. 18. No. 6. pp. 490–502. http://doi.org/10.22363/1815-5235-2022-18-6-490-502. (rus)

103. Rekomendacii po uchetu polzuchesti i usadki betona pri raschete betonnyh i zhelezobetonnyh konstrukcij [Recommendations for taking into account creep and shrinkage of concrete when calculating concrete and reinforced concrete structures]. M.: Stroyizdat, 1988. 120 p. (rus)

104. Travush V.I., Murashkin V.G. Vliyanie polzuchesti na raspredelenie deformacij i napryazhenij v izgibaemom elemente [The influence of creep on the distribution of deformations and stresses in a bending element] // Construction and reconstruction. 2017. No. 2. P. 57–70. (rus)

105. Bondarenko V. M., Klyueva N. V. K raschetu sooruzhenij, menyayushchih raschetnuyu skhemu vsledstvie korrozionnyh povrezhdenij [To the calculation of structures that change the design scheme due to corrosion damage] // News of higher educational institutions. Construction. 2008. No. 1. pp. 4-12. (rus)

106. EN 1992-1-2: 2004. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, 2004.

107. Larionov E.A., Rimshin V.I., Zhdanova T.V. The principle of superimposition of deformations in the theory of creep [The principle of superimposition of deformations in the theory of creep] // Structural mechanics of engineering structures and structures. 2019. Vol. 15. No. 6. pp. 483–496. (rus)

108. Dellepiani M. G. et al. Numerical investigation on the creep response of concrete structures by means of a multi-scale strategy //Construction and Building Materials. 2020. Т. 263. С. 119867.

109. Nazarenko V.G., Zvezdov A.I., Larionov E.A., Kvasnikov A.A. Koncepciya razvitiya prikladnoj teorii polzuchesti zhelezobetona [Concept of development of the applied theory of creep of reinforced concrete] // Concrete and reinforced concrete. 2020. No. 2 (602). pp. 8–11 (rus)

110. Bondarenko V.M., Markov S.V., Rimshin V.I. Korrozionnye povrezhdeniya i resurs silovogo soprotivleniya zhelezobetonnyh konstrukcij [Corrosion damage and the resource of force resistance of reinforced concrete structures] // BST, 2002. No. 8. P. 26-32. (rus)

111. Kmiecik P., Kamiński M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration // Archives of Civil and Mechanical Engineering. 2011. Volume 11. Issue 3. Pp. 623 – 636.

112. Minas A.I. Metod ocenki korrozionnoj stojkosti nekotoryh stroitel'nyh materialov [Method for assessing the corrosion resistance of some building materials] // Construction materials and structures. Rostov n/d., 1972. P.49-61. (rus)

113. Popesko A.I. Rabotosposobnost' zhelezobetonnyh konstrukcij, podverzhennyh korrozii [Performance of reinforced concrete structures subject to corrosion]. St. Petersburg: St. Petersburg State University. architect-builds univ., 1996. 182 p. (rus)

114. Guzeev E.A., Mitin A.A., Basova L.N. Deformativnost' i treshchinostojkost' szhatyh armirovannyh elementov pri dlitel'nom nagruzhenii i dejstvii zhidkih sred [Deformability and crack resistance of compressed reinforced elements under long-term loading and action of liquid media] // Collection of articles. tr. NIIZHB. M.: Stroyizdat, 1984. 34 p. (rus)

115. Savitsky N.V., Guzeev E.A., Bondarenko V.M. Integral'nyj metod ocenki napryazhenno deformirovannogo sostoyaniya zhelezobetonnyh elementov v sluchae vozdejstviya agressivnoj sredy i silovoj nagruzki [Integral method for assessing the stress-strain state of reinforced concrete elements in the case of exposure to an aggressive environment and force load]. Corrosion resistance of concrete and reinforced concrete in aggressive environments. M.: 1984. P. 20-27 (rus)

116. Bondarenko V.M., Klyueva N.V. K raschetu sooruzhenij, menyayushchih raschetnuyu skhemu vsledstvie korrozionnyh povrezhdenij [To the calculation of structures that change the design scheme due to corrosion damage] // News of universities. Construction. 2008. No. 1. pp. 4-12. (rus)

117. Bondarenko V.M., Rimshin V.I. Dissipativnaya teoriya silovogo soprotivleniya zhelezobetona [Dissipative theory of force resistance of reinforced concrete]. M.: Student, 2015. 111 p. (rus)

118. Bondarenko V. M. Silovoe deformirovanie, korrozionnye povrezhdeniya i energosoprotivlenie zhelezobetona [Force deformation, corrosion damage and energy resistance of reinforced concrete]. South-West. state University. Kursk. 2016. 67p. (rus)

119. Selyaev, L.M. Oshkina, P.V. Selyaev V.P. Himicheskoe soprotivlenie cementnyh betonov dejstviyu sul'fat-ionov [Chemical resistance of cement concrete to the action of sulfate ions] // Saransk: Mordov Publishing House. University, 2013 (rus)

120. Selyaev V.P., Selyaev P.V., Alimov M.F., Sorokin E.V. Ocenka ostatochnogo resursa zhelezobetonnyh izgibaemyh elementov, podverzhennyh dejstviyu hloridnoj korrozii [Assessment of the residual life of reinforced concrete bending elements exposed to chloride corrosion] // Construction and reconstruction. 2017. no. 6. pp. 49-58. (rus)

121. Klyueva N.V., Androsova N.B., Gubanova M.S. Kriterij prochnosti korrozionno povrezhdaemogo betona pri slozhnom napryazhennom sostoyanii [Strength criterion for corrosion-damaged concrete under complex stress state] // Structural mechanics of engineering structures and structures. 2015. No. 1. pp. 38-42. (rus)

122. Magda I. Mousa. Effect of bond loss of tension reinforcement on the flexural behaviour of reinforced concrete beams // HBRC Journal. 2016, 12:3, 235-241, DOI: 10.1016/j.hbrcj.2015.01.003.

123. Zandi K, Coronelli D. Anchorage capacity of corroded reinforcement: Eccentric pull-out tests on beamend specimens. In: Report No. 2010-06, Department of Civil and Environmental Engineering. Goteborg, Sweden: Chalmers University of Technology

124. Popov D. S. Eksperimental'nye issledovaniya dinamicheskih svojstv korrozionno-povrezhdennyh szhatyh zhelezobetonnyh elementov [Experimental studies of the dynamic properties of corrosion-damaged compressed reinforced concrete elements] // Construction and reconstruction. 2022. No. 2. pp. 55-64. (rus)

125. Kai Q., Zhiqiang H. U. A. N. G., Yunhao W. E. N. G., Xiaohui Y. U. Study on load resisting mechanism of corroded RC frame structures against progressive collapse //Journal of Building Structures. 2022. Т. 43. №. 9. С. 181.

126. Tamrazyan A. The Bearing Capacity of Compressed Corrosion-Damaged Reinforced Concrete Elements under Lateral Pulse Loading //Buildings. 2023. Т. 13. №. 9. С. 2133.

127. Leonovich, S. N., Litvinovsky, D. A., Chernyakevich, O. Yu., Stepanova, A. V. Prochnost', treshchinostojkost' i dolgovechnost' konstrukcionnogo betona pri temperaturnyh i korrozionnyh vozdejstviyah : v 2 ch [Strength, crack resistance and durability of structural concrete under temperature and corrosion influences: in 2 parts]. Minsk: BNTU, 2016. Part 1. 390 p. (rus)

128. Istomin A.D., Petrova V.A. Usiliya v staticheski neopredelimyh zhelezobetonnyh konstrukciyah pri silovyh i temperaturnyh vozdejstviyah [Efforts in statically indeterminate reinforced concrete structures under force and temperature influences] // Safety of the Russian construction fund, problems and solutions. 2019. pp. 60-68. (rus)

129. Fedorov V.S., Levitsky V.E. Teoreticheskie osnovy prognozirovaniya izmeneniya prochnostnyh i deformativnyh harakteristik betona v usloviyah pozhara [Theoretical foundations for predicting changes in the strength and deformation characteristics of concrete under fire conditions] // Problems of ensuring the safety of the Russian building stock: Proceedings of the III International Academic Readings. Kursk: Kursk State Technical University, 2004. pp. 236–244. (rus)

130. Fedorov V. S. Osnovnye polozheniya teorii rascheta ognestojkosti zhelezobetonnyh konstrukcij [Basic provisions of the theory of calculating the fire resistance of reinforced concrete structures] // Housing Construction. 2010. No. 4. pp. 29-32. (rus)

131. Kiran T., Anand, N., Mathews, M. E., Kanagaraj, B., Andrushia, A. D., Lubloy, E., & Jayakumar, G. Investigation on improving the residual mechanical properties of reinforcement steel and bond strength of concrete exposed to elevated temperature //Case Studies in Construction Materials. 2022. Т. 16. С. e01128.

132. Li Z., Liu, Y., Huo, J., Elghazouli, A. Y. Experimental and analytical assessment of RC joints with varying reinforcement detailing under push-down loading before and after fires //Engineering Structures. 2019. Т. 189. С. 550-564.

133. Parthasarathi N., Satyanarayanan K. S. Progressive collapse behavior of reinforced concrete frame exposed to high temperature //Journal of Structural Fire Engineering. 2020. Т. 12. №. 1. С. 110-124.

134. Matvienko V. E. Soprotivlenie zhelezobetonnoj balki vozdejstviyu pozhara v stadii raboty kak visyachej sistemy [Resistance of a reinforced concrete beam to the effects of fire at the stage of operation as a hanging system] // Prospects for the development of the construction complex. 2020. pp. 235-240.

135. Tamrazyan A. G., Mehralizadeh A. B. Osobennosti proyavleniya ognevyh vozdejstvij pri raschete konstrukcij na progressiruyushchee razrushenie zdanij s perekhodnymi etazhami [Features of the manifestation of fire effects in the calculation of structures for the progressive destruction of buildings with transitional floors] // Fire and Explosion Safety. 2012. T. 21. No. 12. pp. 41-44.

136. Caredda G., Makoond N., Buitrago M., Sagaseta J. Learning from the progressive collapse of buildings //Developments in the built environment. 2023. Т. 15. С. 100194.

137. Sasani M., Werner A., Kazemi A. Bar fracture modeling in progressive collapse analysis of reinforced concrete structures // Engineering Structures. 2011. № 2 (33). C. 401–409.

138. Adam J. M. [и др.]. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario // Engineering Structures. 2020. (210).

139. Meng L., Ding Y., Li L., Wei J., Li M., Wang J., Liu J. Study on dynamic properties of lightweight ultra-high performance concrete (L-UHPC) //Construction and Building Materials. 2023. Т. 399. С. 132526.

140. Bazhenov Yu. M. Beton pri dinamicheskom nagruzhenii [Concrete under dynamic loading]. Moscow: Stroyizdat, 1970. 271 p. (rus)

141. Geniev G. A. Metod opredeleniya dinamicheskih predelov prochnosti betona [Method for determining the dynamic strength limits of concrete] // Concrete and reinforced concrete. 1998. No. 1. P. 18–19. (rus)

142. Nam J. W., Kim H. J., Kim S. B., Jay Kim J. H., Byun K. J. Analytical study of finite element models for FRP retrofitted concrete structure under blast loads // International Journal of Damage Mechanics. 2009. № 5 (18). C. 461–490.

143. Yang Y., Wu C., Liu Z. Rate dependent behaviour of 3D printed ultra-high performance fibre-reinforced concrete under dynamic splitting tensile //Composite Structures. 2023. Т. 309. С. 116727.

144. Wei J., Cheng B., Li L., Long W. J., Khayat K. H. Prediction of dynamic mechanical behaviors of coral concrete under different corrosive environments and its enhancement mechanism //Journal of Building Engineering. 2023. Т. 63. С. 105507.

145. Bazhenova A. V., Tsvetkov K. A. Eksperimental'naya ocenka vliyaniya nekotoryh faktorov na prochnost' betona pri odnokratnom dinamicheskom vozdejstvii [Experimental assessment of the influence of some factors on the strength of concrete under a single dynamic impact] // Integration, partnership and innovation in construction science and education. 2017. pp. 206-212. (rus)

146. Fedorova N.V., Medyankin M.D., Bushova O.B. Opredelenie parametrov statiko-dinamicheskogo deformirovaniya betona [Determination of parameters of static-dynamic deformation of concrete] // Industrial and civil construction. 2020. No. 1. pp. 4-11. (rus)

147. Geniev G. A. Metod opredeleniya dinamicheskih predelov prochnosti betona [Method for determining the dynamic strength limits of concrete] // Concrete and reinforced concrete. 1998. No. 1. P. 18–19 (rus)

148. Yu W., Jin L., Du X. Influence of pre-static loads on dynamic compression and corresponding size effect of concrete: Mesoscale analysis // Construction and Building Materials. 2021. (300). C. 124302.

149. Lai J., Sun W. Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite //Cement and Concrete Research. 2009. Т. 39. №. 11. С. 1044-1051.

150. Levtchitch V., Kvasha V., Boussalis H., Chassiakos A., Kosmatopoulos E. Seismic performance capacities of old concrete //Proceedings, 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada. 2004. С. 1-6.

151. Tamrazyan A. G., Yesayan S. G. Mekhanika polzuchesti betona [Mechanics of concrete creep] // M.: MGSU. 2012.

152. Sidorov V. N. CHislennoe modelirovanie reologicheskih svojstv stroitel'nyh materialov na primere polzuchesti betona [Numerical modeling of the rheological properties of building materials using the example of concrete creep] // Safety of the Russian building stock problems and solutions. 2019. pp. 129-137.

153. Fallon C.T., Quiel S.E., Naito C.J. Uniform Pushdown Approach for Quantifying Building-Frame Robustness and the Consequence of Disproportionate Collapse. Journal of Performance of Constructed Facilities. 2016. Vol. 30. Iss. 6


Review

For citations:


Kolchunov V.I., Iliushchenko T.A., Fedorova N.V., Savin S.Y., Tur V.V., Lizahub A.A. Structural robustness: an analytical review. Building and Reconstruction. 2024;(3):31-71. (In Russ.) https://doi.org/10.33979/2073-7416-2024-113-3-31-71

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)