Imperfections for the calculation of steel structures by the finite element method. Part 2
https://doi.org/10.33979/2073-7416-2024-113-3-3-11
Abstract
It is well known that imperfections are always present in structural elements. Imperfections can significantly affect the behavior and bearing capacity of steel structures, especially in the case of stability-related tasks. Therefore, inconsistencies must be taken into account in the load[1]bearing capacity model and their correct application (setting the shape and value) is a key point in the numerical analysis process. In recent decades, much attention has been paid in the domestic scientific space to updating imperfection models for use in numerical models, including taking into account modern more accurate manufacturing and installation technologies for steel structures. The purpose of this study is an analytical review and analysis of scientific research and technical literature, followed by synthesis and elaboration of recommendations on imperfections in relation to the calculation of steel structures using computer modeling technology, including the finite element method. The results of the study contain instructions on how to set the shapes and values of imperfections for different groups of imperfections. The article consists of two parts. The first part is devoted to the study of geometric imperfections, residual stresses and rules for the combination of imperfections, the second part of the article is devoted to equivalent imperfections.
About the Author
V. V. NadolskiBelarus
Nadolski Vitali V. - candidate of technical science (PhD), docent, associated professor of the department of Building constructions (BSTU Brest); Associate Professor of the Department of Building Structures (BNTU, Minsk)
References
1. Graciano C., Ayestarán A. Steel plate girder webs under combined patch loading, bending and shear . Journal of Constructional Steel Research. 2013. Vol. 80. P. 202–212. DOI: 10.1016/j.jcsr.2012.09.018.
2. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. P. 327–343. DOI: 10.1016/j.jcsr.2014.06.018.
3. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders; part II: Longitudinally stiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. P. 344–353. DOI: 10.1016/j.jcsr.2014.06.017.
4. Nadolski V., Marková J., Podymako V., Sykora M. Pilot numerical analysis of resistance of steel beams under combined shear and patch loading. Proceedings of conference Modelling in Mechanics 2022, Ostrava, 26-27 May 2022. Technical University of Ostrava, Faculty of Civil Engineering, Fakulta stavební. 2021, p. 21-29.
5. Kovacevic S., Markovic N., Sumarac D., Salatic R. Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research. 2019. Vol. 158. P. 213–229. DOI: 10.1016/j.jcsr.2019.03.025.
6. Sinur F., Beg D. Moment–shear interaction of stiffened plate girders—Tests and numerical model verification. Journal of Constructional Steel Research. 2013. Vol. 85. P. 116–129. DOI: 10.1016/j.jcsr.2013.03.007.
7. Nadol’skij V.V. Parametry chislennyh modelej nesushchej sposobnosti dlya stal’nyh elementov [Parameters of numerical models of bearing capacity for steel elements] Stroitel’stvo I rekonstrukciya. 2023. № 1(1). S. 43-56. DOI: 10.33979/2073-7416-2023-105-1-43-56. (rus)
8. Nadol’skij V.V., Vihlyaev A.I. Ocenka nesushchej sposobnosti balok s gof-rirovannoj stenkoj metodom konechnyh elementov pri dejstvii lokal’noj nagruzki [Assessment of the bearing capacity of beams with a corrugated wall by the finite element method under local load] Vestnik MGSU. 2022. T. 17. Vyp. 6. S. 693–706. DOI: 10.22227/1997-0935.202. (rus)
9. Nadol’skij V.V., Podymako V.I. Ocenka nesushchej sposobnosti stal’noj balki metodom konechnyh elementov pri sovmestnom dejstvii lokal’nyh I sdvigovyh usilij [Assessment of the bearing capacity of a steel beam by the finite element method under the combined action of local and shear forces] Stroitel’stvo I rekonstrukciya. 2022. №2 (100). S.26-43. (rus)
10. Fieber A., Gardner L., Macorini L. Design of structural steel members by advanced inelastic analysis with strain limits . Engineering Structures. 2019. Vol. 199. Paper 109624. DOI: 10.1016/j.engstruct.2019.109624.
11. Gardner L., Yun X., Fieber A., Macorini L. Steel design by advanced analysis: material 10odelling and strain limits . Engineering. 2019. Vol. 5. P. 243–249. DOI: 10.1016/j.eng.2018.11.026.
12. Chacon R., Serrat M., Real E. The influence of structural imperfections on the resistance of plate girders to patch loading . Thin-Walled Struct. 2012. Vol. 53. P. 15–25. DOI: https: doi.org/10.1016/j.tws.2011.12.003.
13. Lindner J., Kuhlmann U., Just A. Verification of flexural buckling according to EN 1993-1–1 using bow imperfections . Steel Construction. 2016. Vol. 9. P. 349-362. DOI:10.1002/stco.201600004.
14. Lindner J., Kuhlmann U., Jörg F. Initial bow imperfections e0 for the verification of flexural buckling according to Eurocode 3 Part 1–1 – additional considerations . Steel Construction. 2018. Vol. 11. P. 30-41. DOI: 10.1002/stco.20170.
15. Walport F., Gardner L., Nethercot D.A. Equivalent bow imperfections for use in design by second order inelastic analysis . Structures. 2020. Vol. 26. P. 670–685. DOI: 10.1016/j.istruc.2020.03.065.
16. Quan Ch., Walport F., Gardner L. Equivalent imperfections for the out-of-plane stability design of steel beams by second-order inelastic analysis . Engineering Structures. – 2021. Vol. 251. Paper 113481. DOI: 10.1016/j.engstruct.2021.113481.
17. Nadol’skij V.V. Statisticheskie harakteristiki pogreshnosti chislennyh modelej nesushchej sposobnosti dlya stal’nyh elementov [Statistical characteristics of the error of numerical models of bearing capacity for steel elements] Stroitel’stvo I rekonstruk-ciya. 2023. №3 (107). С.17-34. DOI: 10.33979/2073-7416-2023-107-3-17-34. (rus).
18. Radwan M., Kövesdi B. Local plate buckling type imperfections for NSS and HSS welded box-section columns . Structures. 2021. Vol. 34. P. 2628-2643. DOI: 10.1016/j.istruc.2021.09.011.
19. Haffar Z.M., Kövesdi B., Ádány S. On the buckling of longitudinally stiffened plates, part 2: Eurocodebased design for plate-like behaviour of plates with closed-section stiffeners . Thin-Walled Structures. 2019. Vol. 145. Paper 106395. DOI: 10.1016/j.tws.2019.106395.
20. Kala Z. Geometrically non-linear finite element reliability analysis of steel plane frames with initial imperfections . Journal of Civil Engineering and Management. 2012. Vol. 18. P. 81–90. DOI: 10.3846/13923730.2012.655306.
21. Yang H., Liu S., Fang Z., Zhao J. Investigation of intermediate-height horizontal brace forces under horizontal and vertical loads including random initial imperfections . Buildings. 2023. Vol. 13. Paper 180. DOI: 10.3390.
22. Zhang H., Shayan S., Rasmussen K.J.R., Ellingwood B.R. System-based design of planar steel frames, I: Reliability framework . Journal of Constructional Steel Re-search. 2016. Vol. 123. P. 135-143. DOI: 10.1016/j.jcsr.2016.05.004.
Review
For citations:
Nadolski V.V. Imperfections for the calculation of steel structures by the finite element method. Part 2. Building and Reconstruction. 2024;(3):3-11. (In Russ.) https://doi.org/10.33979/2073-7416-2024-113-3-3-11