Resource potential of dust entrainment of asphalt-concrete plants
https://doi.org/10.33979/2073-7416-2024-112-2-117-127
Abstract
In the modern construction industry, the problem of finding materials with increased stability that would provide minimal environmental impact with optimal economic efficiency is urgent. Considering global trends in the field of ecology and sustainable development, attention is focused on recycling and reuse of industrial waste. Of particular interest is the pulverized material formed during the operation of asphalt concrete plants. In this paper, the potential of integrating this type of waste as an alternative construction resource is studied. This article focuses on the urgent need to adapt the principles of sustainability in construction practice through the integration of materials with minimal environmental footprint. The key aspect of the study is the concept of recycling of pulverized waste from asphalt concrete production, which can help optimize the resource potential and reduce the environmental burden on the ecosystem. The study examines various dust compositions obtained from asphalt plants of different operating principles. The morphology of particles and the bitumen capacity parameter were investigated. It was found that by replacing up to 50% of mineral powder with carryover dust, there can be a significant environmental and economic impact for the road construction industry.
About the Authors
N. I. ShestakovRussian Federation
Shestakov Nikolay I. - Candidate of Technical Sciences, Associate Professor of the Department of Urban Planning,
Moscow
N. D. Aleshin
Russian Federation
Aleshin Nikita D. - Student of the Faculty of Construction,
Moscow
A. D. Makarov
Russian Federation
Makarov Aleksei D. - Student of the Faculty of Construction,
Moscow
References
1. Bakaeva N.V., CHernyaeva I.V. Principy ocenki effektivnosti gradostroitel'noj deyatel'nosti v Rossii. Ekonomika stroitel'stva i prirodopol'zovaniya. 2022. No. 1-2 (82-83). Pp. 134-144.
2. Voevodin E.S., Akulov K.A., Kataev S.A., Askhabov A.M., Kashura A.S Rol' avtomobilizacii v ekologii gorodskoj sredy. Transport. Transportnye sooruzheniya. Ekologiya. 2021. No. 3. Pp. 5-13.
3. Golenkov V.A., Bakaeva N.V., SHishkina I.V. Osnovnye napravleniya obespecheniya ekologicheskoj bezopasnosti avtotransportnoj infrastruktury gorodskogo hozyajstva na osnove biosferosovmestimyh tekhnologij. Building and Reconstruction. 2012. No. 2 (40). Pp. 55-62.
4. Borisevich YU. A., Abdrahmanova K. A., Samoraj D. N., Alihanova A. N. Ustojchivoe razvitie kak osnova modernizacii zhiloj zastrojki. Stroitel'stvo i rekonstrukciya. 2022. No. 4(102). Pp. 87-111. DOI 10.33979/2073-7416-2022-102-4-87-111. EDN OFXYTR.
5. Kapucu N., Ge Y., Martín Y. Urban resilience for building a sustainable and safe environment. Urban Governance. 2021. Pp. 1-7.
6. Korolev E.V., Inozemcev S.S., SHekhovcova S.YU., SHestakov N.I., Inozemcev A.S. Tekhnologiya dorozhnyh betonov. uchebnoe posobie dlya obuchayushchihsya po napravleniyam podgotovki 08.03.01 i 08.04.01 Stroitel'stvo v 2 chastyah / Tom 1. Moskva, 2020.
7. Priluckaya V.A. Problemy ekologii pri stroitel'stve i ekspluatacii avtomobil'nyh dorog. Mezhdunarodnyj zhurnal prikladnyh nauk i tekhnologij Integral. 2017. No. 4. Pp. 27.
8. Traxler L. N. et al. Asphalt fume condensates produce a multiplicity of tumors in the A/J mouse. Journal of Applied Toxicology. 1995. 15(3), 197-204.
9. Manohin V.YA., Ivanova I.A. Razrabotka metodov povysheniya promyshlennoj bezopasnosti tekhnologicheskih processov v smesitelyah asfal'tobetonnyh zavodov. Nauchnyj Vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arhitektura. 2008. Vypusk №3 (11).
10. Gorohov S.S. Ochistka pyli i othodyashchih gazov na ABZ. Mir dorog. 2019. No. 118. Pp. 62-63.
11. Dungan R. S. Board-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. Journal of Animal Science. 2010. 88(11). Pp. 3693-3706.
12. Menzie C. A. et al. The importance of considering soil ingestion exposure for wildlife: An example from the asphalt industry. Human and Ecological Risk Assessment: An International Journal. 2007. 13(2), 311-327.
13. Fulcher K. N., et al. (2009). Assessing the airborne particulate matter (PM2.5) generated by two types of asphalt processes. Journal of Occupational and Environmental Hygiene. 2009. 6(11). Pp. 678-687.
14. Ghosh R. et al. (2013). Occupational exposures among construction workers: Variations by work tasks, trades, and sites. Journal of Occupational and Environmental Hygiene. 2013. 10(7), 366-375.
15. Wang C. et al. Emissions from asphalt pavement during construction: A predictive model. Atmospheric Environment. 2012. 55. Pp. 178-186.
16. Silkin V.V., Lupanov A.P., Rudakova V.V., Gorohov S.S., Silkin A.V Povyshenie ekologicheskoj bezopasnosti asfal'tobetonnyh zavodov. Dorogi i mosty. 2019. No. 1 (41). Pp. 273-292.
17. Lupanov A.P., Moiseeva N.G., Gladyshev N.V. Vybrosy zagryaznyayushchih veshchestv pri proizvodstve asfal'tobetonnyh smesej i puti ih snizheniya. Nauka i tekhnika v dorozhnoj otrasli. 2013. № 4. Pp. 37-38.
18. Manohin V.YA., Ivanova I.A., Golovina E.I. Bezopasnost' tekhnologicheskih processov prosushivaniya i nagreva nerudnyh materialov asfal'tobetona. Informacionnye tekhnologii v stroitel'nyh, social'nyh i ekonomicheskih sistemah. 2022. No. 1 (27). Pp. 138-143.
19. Manohin V.YA., Ivanova I.A., Sazonova S.A. Razrabotka metodov opredeleniya parametrov rasseivaniya tverdyh atmosfernyh primesej. Kompleksnaya bezopasnost'. 2017. T. 1. No. 1. Pp. 27-30.
20. CHekh R.I., Kurov L.N. Puti snizheniya pylevyh vybrosov na asfal'tobetonnyh zavodah. Uspekhi sovremennogo estestvoznaniya. 2011. No. 7. Pp. 234-234
Review
For citations:
Shestakov N.I., Aleshin N.D., Makarov A.D. Resource potential of dust entrainment of asphalt-concrete plants. Building and Reconstruction. 2024;(2):118-127. (In Russ.) https://doi.org/10.33979/2073-7416-2024-112-2-117-127