Imperfections for the calculation of steel structures by the finite element method. Part 1
https://doi.org/10.33979/2073-7416-2024-112-2-28-38
Abstract
It is well known that imperfections are always present in structural elements. Imperfections can significantly affect the behavior and bearing capacity of steel structures, especially in the case of stability-related tasks. Therefore, inconsistencies must be taken into account in the loadbearing capacity model and their correct application (setting the shape and value) is a key point in the numerical analysis process. In recent decades, much attention has been paid in the domestic scientific space to updating imperfection models for use in numerical models, including taking into account modern more accurate manufacturing and installation technologies for steel structures. The purpose of this study is an analytical review and analysis of scientific research and technical literature, followed by synthesis and elaboration of recommendations on imperfections in relation to the calculation of steel structures using computer modeling technology, including the finite element method. The results of the study contain instructions on how to set the shapes and values of imperfections for different groups of imperfections. The article consists of two parts. The first part is devoted to the study of geometric imperfections, residual stresses and rules for the combination of imperfections, the second part of the article is devoted to equivalent imperfections.
About the Author
V. V. NadolskiBelarus
Nadolski Vitali V. - candidate of technical science (PhD), docent, associated professor of the department of Building constructions;
Associate Professor of the Department of Building Structures,
Minsk
References
1. Graciano C., Ayestarán A. Steel plate girder webs under combined patch loading, bending and shear . Journal of Constructional Steel Research. 2013. Vol. 80. P. 202–212. DOI: 10.1016/j.jcsr.2012.09.018.
2. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. P. 327–343. DOI: 10.1016/j.jcsr.2014.06.018.
3. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders; part II: Longitudinally stiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. P. 344–353. DOI: 10.1016/j.jcsr.2014.06.017.
4. Nadolski V., Marková J., Podymako V., Sykora M. Pilot numerical analysis of resistance of steel beams under combined shear and patch loading. Proceedings of conference Modelling in Mechanics 2022, Ostrava, 26-27 May 2022. Technical University of Ostrava, Faculty of Civil Engineering, Fakulta stavební. 2021, p. 21-29.
5. Kovacevic S., Markovic N., Sumarac D., Salatic R. Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research. 2019. Vol. 158. P. 213–229. DOI: 10.1016/j.jcsr.2019.03.025.
6. Sinur F., Beg D. Moment–shear interaction of stiffened plate girders—Tests and numerical model verification. Journal of Constructional Steel Research. 2013. Vol. 85. P. 116–129. DOI: 10.1016/j.jcsr.2013.03.007.
7. Nadol'skij V.V. Raschet i konstruirovanie flancevogo soedineniya ele-mentov pryamougol'nogo secheniya, podverzhennyh central'nomu rastyazheniyu [Calculation and design of the flange connection of rectangular cross-section elements subject to central tension]. Vestnik Polockogo gosudarstvennogo universiteta. 2018. № 16. S. 121–130. (rus)
8. Nadol'skij V.V. Parametry chislennyh modelej nesushchej sposobnosti dlya stal'nyh elementov [Parameters of numerical models of bearing capacity for steel elements] Stroitel'stvo i rekonstrukciya. 2023. № 1(1). S. 43-56. DOI: 10.33979/2073-7416-2023-105-1-43-56. (rus)
9. Nadol'skij V. V., Vihlyaev A.I. Ocenka nesushchej sposobnosti balok s gof-rirovannoj stenkoj metodom konechnyh elementov pri dejstvii lokal'noj nagruzki [Assessment of the bearing capacity of beams with a corrugated wall by the finite element method under local load] Vestnik MGSU. 2022. T. 17. Vyp. 6. S. 693–706. DOI: 10.22227/1997-0935.202. (rus)
10. Nadol'skij V. V., Podymako V.I. Ocenka nesushchej sposobnosti stal'noj balki metodom konechnyh elementov pri sovmestnom dejstvii lokal'nyh i sdvigovyh usilij [Assessment of the bearing capacity of a steel beam by the finite element method under the combined action of local and shear forces] Stroitel'stvo i rekonstrukciya. 2022. №2 (100). S.26-43. (rus)
11. Kuzhava Z. Statisticheskaya ocenka sluchajnyh nepravil'nostej real'nyh central'no szhatyh sterzhnej [Statistical evaluation of random irregularities of real centrally compressed rods]. Stroitel'naya mekhanika i raschyot sooruzhenij. 1982. №5. s.61-62. (rus)
12. SHapiro V.D. Statisticheskoe issledovanie nachal'nyh iskrivlenij pri zavodskom izgotovlenii stal'nyh stropil'nyh ferm [Statistical study of initial curvatures in the factory manufacture of steel trusses]. V kn.: Problemy nadyozhnosti v stroitel'nom proektirovanii. Sverdlovsk. 1972. S.268-273. (rus)
13. Korchak M.D. O vliyanii nachal'nyh iskrivlenij poyasa na ustojchivost' re-shetchatogo sterzhnya [On the effect of the initial curvature of the belt on the stability of the lattice rod] Sovershenstvovanie i razvitie norm proektirovaniya stal'nyh stroitel'nyh konstrukcij: Sb. nauch. tr. CNIISKa im. Kucherenko. Moskva. 1981. S. 119 - 127. (rus)
14. Broude B.M., Moiseev V.I. Ustojchivost' pryamougol'nyh plastinok s uprugim zashchemleniem prodol'nyh storon [Stability of rectangular plates with elastic clamping of longitudinal sides] Stroitel'naya mekhanika i raschet sooruzhenij. 1982. № 1. s. 39 - 42. (rus)
15. Belyj G.I., Stegachev P.B. Prostranstvennoe deformirovanie nesushchaya spo-sobnost' szhatyh sterzhnej stal'nyh ferm, imeyushchih nachal'nye geometricheskie neso-vershenstva [Spatial deformation bearing capacity of compressed rods of steel trusses having initial geometric irregularities] Metallicheskie konstrukcii i ispytanie sooruzhenij. 1982. S. 66-75. (rus)
16. Gorev V.V., Putilin V.M. O nesushchej sposobnosti i deformativnosti szha-tyh skvoznyh sterzhnej [On the bearing capacity and deformability of compressed through rods] Stroitel'naya mekhanika i raschet sooruzhenij. 1976. № 3. S. 34 - 37. (rus)
17. Grudev I.D., Simon N.YU. Raschyot zon plastichnosti pri szhatii pervona-chal'no iskrivlyonnogo sterzhnya [Calculation of plasticity zones under compression of a initially curved rod] Izvestiya VUZov. Stroitel'stvo i arhitektura. 1984. №7. S.27-30. (rus)
18. Schmidt H. Stability of steel shell structures: General report . Journal of Constructional Steel Research. 2000. Vol. 55(1-3). P. 159-181.
19. Somodi B., Kövesdi B. Residual stress measurements on welded square box-sections using steel grades of S235-S960 . Thin-Walled Structures. 2018. Vol. 123. P. 142-154. DOI: 10.1016/j.tws.2017.11.028.
20. ECCS TC8, Ultimate limit state calculation of sway frames with rigid joints. Publication No. 33, 1984.
21. Rasmussen K.J.R., Hancock G.J. Plate slenderness limits for high strength steel sections . Journal of Constructional Steel Research. 1992. Vol. 23. P. 73–96. DOI: 10.1016/0143-974X(92)90037-F.
22. Ban H., Shi G., Shi Y., Wang Y. Overall buckling behavior of 460MPa high strength steel columns: Experimental investigation and design method . Journal of Constructional Steel Research. 2012. Vol. 74. P. 140–150. DOI: 10.1016/j.jcsr.2012.0.
23. Ban H., Shi G., Shi Y., Bradford M.A. Experimental investigation of the overall buckling behaviour of 960 MPa high strength steel columns . Journal of Constructional Steel Research. 2013. Vol. 88. P. 256–266. DOI: 10.1016/j.jcsr.2013.05.015.
24. Pavlovčič L., Froschmeier B., Kuhlmann U., Beg D. Finite element simulation of slender thin-walled box columns by implementing real initial conditions . Advances in Engineering Software. 2012. Vol. 44(1). P. 63–74. DOI: 10.1016/j.adv.
25. Cruise R.B., Gardner L. Residual stress analysis of structural stainless steel sections . Journal of Constructional Steel Research. 2008. Vol. 64(3). P. 352–366. DOI: 10.1016/j.jcsr.2007.08.001.
26. Degée H., Detzel A., Kuhlmann U. Interaction of global and local buckling in welded RHS compression members . Journal of Constructional Steel Research. 2008. Vol. 64(7-8). P. 755-766. DOI: 10.1016/j.jcsr.2008.01.032.
27. Arrayago I., Rasmussen K.J.R. Influence of the imperfection direction on the ultimate response of steel frames in advanced analysis . Journal of Constructional Steel Research. 2022. Vol. 190. Paper 107137. Doi: 10.1016/j.jcsr.2022.107.
28. Timmers R. Influence of the imperfection shapes on the collapse mechanisms of stiffened plates with class 4 trapezoidal stiffeners . Proceedings of the 8th International Conference on Coupled Instabilities in Metal Structures, Lodz University of Technology, Poland, July 12. 14, 2021. DOI:10.2139/ssrn.3867313.
29. Timmers R., Lener G. Collapse mechanisms and load–deflection curves of unstiffened and stiffened plated structures from bridge design . Thin Walled Structures. 2016. Vol. 106. P. 448–458. DOI: 10.1016/j.tws.2016.05.020.
30. Radwan M., Kövesdi B. Equivalent geometrical imperfections for local and global interaction buckling of welded square box section columns . Structures. 2023. Vol. 48. P. 1403-1419. DOI: 10.1016/j.istruc.2023.01.045.
Review
For citations:
Nadolski V.V. Imperfections for the calculation of steel structures by the finite element method. Part 1. Building and Reconstruction. 2024;(2):28-38. (In Russ.) https://doi.org/10.33979/2073-7416-2024-112-2-28-38