Preview

Building and Reconstruction

Advanced search

The effect of non-removable void generators on the strength of monolithic reinforced concrete floor slabs clamped along the contour

https://doi.org/10.33979/2073-7416-2024-112-2-3-15

Abstract

The article presents the results of a numerical experiment to determine the effect of non-removable void generators on the strength of monolithic reinforced concrete floor slabs clamped along the contour. The experimental samples are made in the form of spatial models using volumetric finite element models in the LIRA-CAD software package. The tests were carried out on 4 series of samples, differing in terms of dimensions and reinforcement. Detailed descriptions of the dependencies used and the laws of deformation of materials during the construction of models are given. The values of compressive stresses in concrete and reinforcement, as well as tensile stresses in reinforcement obtained as a result of tests, were subjected to comparative analysis. Based on the conducted experiment, it was found that the use of non-removable voids in a monolithic reinforced concrete slab does not reduce its strength, while reducing concrete consumption by 18.3-23.1%.

About the Author

B. K. Dzhamuev
National Research Moscow State University of Civil Engineering
Russian Federation

Dzhamuev Bulat K. - сandidate of technical science, associated professor, associated professor of the department of reinforced concrete and stone structures,

Moscow



References

1. GOST 10180-2012 «Reinforced concrete multi-cavity floor slabs for buildings and structures technical conditions». (rus)

2. Prilutsky O.G. Sposob izgotovleniya monolitnogo stroitel'nogo elementa [Method of manufacturing a monolithic building element] // Russian Patent No.RU2243889C2. 10.01.2005. (rus)

3. OOO «K-RegionStroj». Mnogopustotnaya zhelezobetonnaya plita perekrytiya [Multi-cavity reinforced concrete floor slab] // Patent No.RU49853U1. 12/10/2005. (rus)

4. Kotenkov I.A. Mnogopustotnaya zhelezobetonnaya plita perekrytiya [Multi-hollow reinforced concrete floor slab] // Patent of Belarus No.BY7667U. 10/30/2011. (rus)

5. UO «BGTU». Pustotoobrazovatel' bezbalochnoj plity perekrytiya [Void-forming girderless floor slab] // Patent of Belarus No. BY8418U. 30.08.2012. (rus)

6. Martynov A.A. Sposob izgotovleniya zdanij i sooruzhenij s transformiruemoj v processe ekspluatacii planirovkoj [Method of manufacturing buildings and structures with a layout transformed during operation] // Patent of Russia No. RU2488667C2. 07/27/2013. (rus)

7. Pushkarev B.A. Sposob izgotovleniya monolitnyh zhelezobetonnyh balochnyh plit perekrytij s kruglymi pustotami, s primeneniem neizvlekaemyh kartonno-polietilenovyh pustotoobrazovatelej [Method of manufacturing monolithic reinforced concrete floor slabs with round voids, using non-removable cardboard-polyethylene void formers] // Russian Patent No.RU2634156C2. 10/24/2017. (rus)

8. STO 38311046-001-2019 «Monolithic reinforced concrete lightweight slabs with Simkar void formers. Rules of design and construction». (rus)

9. STO 35546020.001-2016 «Fixed formwork (voids and couplings) Sibforma ®. General information about the technology, product range. Recommendations for the calculation and design of monolithic girderless floor slabs with non-removable formwork Sibform ® in accordance with SP 63.13330.2012». (rus)

10. Tiwari N. and Zafar S. Structural Behavior of Bubble Deck Slabs and Its Application: Main Paper. IJSRD International Journal for Scientific Research & Development. 2016. Vol. 4. Issue 02. Pp: 433-437. ISSN (online): 2321-0613.

11. Ibrahim A. M., Ali N. K., and Salman W. D. Flexural Capacities of Reinforced Concrete Two-Way Bubbledeck Slabs of Plastic Spherical Voids. J. Print. Iraq. 2013. Vol. 06. No. 02. Pp: 9-20.

12. Valivonis J., Skuturna T, Daugeviius M. and Šneideris A. Punching shear strength of reinforced concrete slabs with plastic void formers. Constr. Build. Mater. 2017. Vol.145. Pp: 518-527.

13. Saifulla M., Azeem M. A. Comparative Seismic Performance of a Conventional Slab and Flat Slab over a Bubble Deck Slab. International Journal of Emerging Technology and Advanced Engineering. November 2017. Vol. 7. Issue 11.. Pp: 137-143.

14. Teja P. P., Kumar P. V, Mounika C. R., and Saha P. Structural Behavior of Bubble Deck Slab. January 2012. Pp: 383-388.

15. Lakshmikanth L., Poluraju P. Performance of Structural Behaviour of Bubble Deck Slab. International Journal of Recent Technology and Engineering (IJRTE). April 2019. Vol.7. Issue 6C2. ISSN: 2277-3878.

16. Varghese J. P, M. George. Parametric Investigation on the Seismic Response of Voided and Solid Flat Slab Systems. IJISET - International Journal of Innovative Science, Engineering & Technology. March 2018. Vol. 5. Issue 3. Pp: 256-258.

17. Mahalakshmi S., S. Nanthini S., and Saha A. P. Experimental Studies on Comparison of Conventional Slab and Bubble Deck Slab Based on Strength. 2017. Vol. 5. Pp: 580-588.

18. Orlova M.D., Mnushkin M.A., Evtushenko I.S., Vinogradova K.I., Egarmin K.A. Analiz primeneniya pustotoobrazovatelej iz reciklirovannogo polipropilena pri sozdanii oblegchennyh monolitnyh perekrytij. Issledovanie razlichnyh napravlenij sovremennoj nauki: Sbornik materialov XXI Mezhdunarodnoj nauchno-prakticheskoj konferencii. [Analysis of the use of hollow formers from recycled polypropylene in the creation of lightweight monolithic floors. Research of various directions of modern science: Collection of materials of the XXI International Scientific and practical Conference]. Part 1. Moscow. 2017. Pp.562-567. (rus)

19. Filimonova E. S. Analiz napryazhenno-deformirovannogo sostoyaniya monolitnoj plity perekrytiya s pustotoobrazovatelyami po sisteme Cobiax na osnovanii razlichnyh raschetnyh modelej [Analysis of the stress-strain state of a monolithic floor slab with void generators according to the Cobiax system based on various computational models] // J. Young Scientist. 2022. No. 20 (415). Pp. 107-109. (rus)

20. Malahova A.N. Pustotnye kessonnye plity perekrytij monolitnyh mnogoetazhnyh zdanij [Hollow coffered floor slabs of monolithic multi-storey buildings] // J. Vestnik MGSU. 2016. No. 6. Pp. 15-24. (rus)

21. SP 63.13330.2018 «Concrete and reinforced concrete structures. The main provisions. Updated edition of SNiP 52-01-2003». (rus)

22. Handbook of the designer of industrial, residential and public buildings and structures / edited by A.A. Umansky. Moscow: Gosstroyizdat, 1960. 1041 p. (rus) 23. SP 20.13330.2016 «Loads and impacts. Updated version of SNiP 2.01.07-85». (rus)


Review

For citations:


Dzhamuev B.K. The effect of non-removable void generators on the strength of monolithic reinforced concrete floor slabs clamped along the contour. Building and Reconstruction. 2024;(2):3-15. (In Russ.) https://doi.org/10.33979/2073-7416-2024-112-2-3-15

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)