Protecting facades of cultural heritage objects from the wind-driven rain: a review of experimental studies
https://doi.org/10.33979/2073-7416-2023-110-6-73-85
Abstract
The relevance of the study is due to the fact that erosion of the surface of building materials is a common phenomenon observed on the facades of historic buildings. Climatic changes can lead to an increase in the frequency and intensity of extreme precipitation, which can increase the erosion effects on the facades of buildings due to the wind-driven rain. The purpose of the study is to compare experimental methods for assessing the degree of surface erosion of historic building materials under the influence of wind-driven rainfall. The objectives of the study are to review modern methods for measuring the effect of rain with wind on the surface erosion and reduction of the strength of brick and limestone; to critically analyze the best-known methods for assessing the degree of erosion of the surface of building materials; to offer recommendations for the protection and restoration of damaged facades of cultural heritage objects due to the wind-driven rain. The significance of the obtained results for architects and designers is that the use of methods to assess the degree of damage to the facades of architectural monuments due to wind-driven rainfall makes it possible to monitor and develop measures to protect objects of cultural heritage.
About the Authors
V. N. KupriyanovRussian Federation
Kupriyanov Valery N. - doctor of technical sciences, professor of the department of architecture, corresponding member of the RAACS.
Kazan
A. G. Khabibulina
Russian Federation
Khabibulina Albina G. - candidate of economical science, associated professor of the department of architecture.
Kazan
A. M. Suleymanov
Russian Federation
Suleymanov Alfred M. - doctor of technical sciences, professor, head of building materials department.
Kazan
References
1. Haugen A., Mattsson J. Preparations for climate change's influences on cultural heritage. International Journal of Climate Change Strategies and Management. 2011. Vol. 3. No. 4. Pp. 386–401. doi:10.1108/17568691111175678.
2. Brimblecombe P., Grossi C. M., Harris I. Climate change critical to cultural heritage. Survival and sustainability: environmental concerns in the 21st century. 2011. Pp. 195–205. Springer.
3. Sesana E., Gagnon A., Ciantelli C., Cassar J., Hughes J. Climate change impacts on cultural heritage: A literature review. WIREs Climate Change. 2021. No. 12 (1). 29 p. doi:10.1002/wcc.710.
4. Camuffo D. Climate change, human factor, and risk assessment. Microclimate for cultural heritage. 2019. Pp. 303–340. Elsevier.
5. Spezzano P. Mapping the susceptibility of UNESCO World Cultural Heritage sites in Europe to ambient (outdoor) air pollution. Science of The Total Environment. 2021. Vol. 754. 142345. doi:10.1016/j.scitotenv.2020.142345
6. Vidović K., Hočevar S., Menart E., Drventić I., Grgić I., Kroflič A. Impact of air pollution on outdoor cultural heritage objects and decoding the role of particulate matter: a critical review. Environmental Science and Pollution Research. 2022. Vol. 29. Pp. 46405–46437. doi:10.1007/s11356-022-20309-8
7. Cutler N.A., Viles H.A., Ahmad S., McCabe S., Smith B. J. Algal «greening» and the conservation of stone heritage structures. Science of the Total Environment. 2013. Vol. 442. Pp. 152–164. doi:10.1016/j.scitotenv.2012.10.050
8. Stroganov V.F., Boichuk V.A., Sagadeev E.V. Biodeterioration of wooden materials and structures. Izvestiya KGASU. 2014. No. 2 (28). Pp. 185–193.
9. Stroganov V.F., Sagadeev E.V., Vahitov B.R. Application of model mediums for the biostability assessment of mineral construction materials. Izvestiya KGASU. 2017. No. 3 (41). Pp. 196–202.
10. Prieto B., Vázquez-Nion D., Fuentes E., Durán-Román A.G. Response of subaerial biofilms growing on stone-built cultural heritage to changing water regime and CO2 conditions. International Biodeterioration & Biodegradation. 2020. Vol. 148. 104882. doi:10.1016/j.ibiod.2019.104882
11. Bessonov I.V., Baranov V.S., Baranov V.V., Knyazeva V.P., Elchischeva T.F. Reasons and eliminate efflorescence on the brick walls of buildings. Housing Construction. 2014. No. 7. Pp. 39–43.
12. Menéndez B. Estimators of the impact of climate change in salt weathering of cultural heritage. Geosciences. 2018. No. 8 (11). 401. doi:10.3390/geosciences8110401
13. Tang W., Davidson C.I., Finger S., Vance K. Erosion of limestone building surfaces caused by winddriven rain: 1. Field measurements. Atmospheric Environment. 2004. Vol. 38. Issue 33. Pp. 5589–5599. doi:10.1016/j.atmosenv.2004.06.030
14. Tang W., Davidson C.I. Erosion of limestone building surfaces caused by wind-driven rain: 2. Numerical modeling. Atmospheric Environment. 2004. Vol. 38. Issue 33. Pp. 5601–5609. doi:10.1016/j.atmosenv.2004.06.014
15. Erkal A., D’Ayala D., Sequeira L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Building and Environment. 2012. Vol. 57. Pp. 336–348. doi:10.1016/j.buildenv.2012.05.004
16. Nikitin V.I., Kofanov V.A. On consider of driving rain and capillary properties of materials when assessing moisture enclosing structures. Vestnik BrSTU. Construction and Architecture. 2013. No. 1 (79). Pp. 91–95.
17. Kupriyanov V.N., Petrov A.S., Chebysheva D.G. Rain impact on aging and destruction of external walls materials. The amount of rain calculation. Expert: Theory and Practice. 2020. No. 1 (4). Pp. 28–32. doi:10.24411/26867818-2020-10004
18. Blocken B., Dezsö G., Beeck J. van, Carmeliet J. Comparison of calculation models for wind-driven rain deposition on building facades. Atmospheric Environment. 2010. Vol. 44. Issue 14. Pp. 1714–1725. doi:10.1016/j.atmosenv.2010.02.011
19. Gholamalipour P., Ge H., Stathopoulos T. Wind-driven rain (WDR) loading on building facades: A stateof-the-art review. Building and Environment. 2022. Vol. 221. 109314. doi:10.1016/j.buildenv.2022.109314
20. Baheru T., Chowdhury A.G., Pinelli J.-P., Bitsuamlak G. Distribution of wind-driven rain deposition on low-rise buildings: Direct impinging raindrops versus surface runoff. Journal of Wind Engineering and Industrial Aerodynamics. 2014. Vol. 133. Pp. 27–38. doi:10.1016/j.jweia.2014.06.023
21. Abuku M., Janssen H., Poesen J., Roels S. Impact, absorption and evaporation of raindrops on building facades. Building and Environment. 2009. Vol. 44. Issue 1. Pp. 113–124. doi:10.1016/j.buildenv.2008.02.001.
22. Artesani A., Di Turo F., Zucchelli M., Traviglia A. Recent Advances in Protective Coatings for Cultural Heritage – An Overview. Coatings. 2020. No. 10 (3). 217. doi:10.3390/coatings10030217
23. Pino F., Fermo P., Russa M.L., Ruffolo S., Comite V., Baghdachi J., Pecchioni E., Fratini F., Cappelletti G. Advanced mortar coatings for cultural heritage protection. Durability towards prolonged UV and outdoor exposure. Environmental Science and Pollution Research. 2016. No. 24 (14). Pp. 12608–12617. doi:10.1007/S11356-016-7611-3
24. Kahangi Shahreza S., Niklewski J., Molnár M. Experimental investigation of water absorption and penetration in clay brick masonry under simulated uniform water spray exposure. Journal of Building Engineering. 2021. Vol. 43. doi:10.1016/j.jobe.2021.102583
25. Apostolopoulou M., Aggelakopoulou E., Bakolas A., Moropoulou A. Compatible mortars for the sustainable conservation of stone in masonries. Advanced Materials for the Conservation of Stone. 2018. Pp. 97–123. Springer. doi:10.1007/978-3-319-72260-3_5
26. Ge H., Chiu V., Stathopoulos T. Effect of overhang on wind-driven rain wetting of facades on a mid-rise building: Field measurements. Building and Environment. 2017. Vol. 118. Pp. 234–250. doi:10.1016/j.buildenv.2017.03.034
Review
For citations:
Kupriyanov V.N., Khabibulina A.G., Suleymanov A.M. Protecting facades of cultural heritage objects from the wind-driven rain: a review of experimental studies. Building and Reconstruction. 2023;(6):73-85. (In Russ.) https://doi.org/10.33979/2073-7416-2023-110-6-73-85