Preview

Building and Reconstruction

Advanced search

Formation of the route of the main crack of destruction in the multi-level structure of conglomerate building composites

https://doi.org/10.33979/2073-7416-2023-109-5-119-131

Abstract

In the publication, conglomerate building composites (concrete) are identified as heterogeneous solids with a hierarchically organized spatial-geometric structure with a characteristic dimension from 10-10 to 10-1 m, with a minimum of 5-6 scale levels and three types of substructure design that differ in scale, genesis and mechanics of properties manifestation. The first type is characteristic of the macro-, meso- and microscale levels and is taken in the form of a two-component “construction” of a spatially continuous matrix and discrete solid and gaseous (macropores) inclusions deterministically and stochastically distributed in it; the second type refers to the submicro-, ultramicro- and nanoscale levels and is believed to be in the form of a “microscale spatial structure” of new formations of a cementitious substance from consolidated individual crystalline differences; the third type, finally, corresponds to the atomic-molecular structure of new formations of the cementing substance. Characteristics of the distinguished types of substructures are given according to the scale of their components, the peculiarities of formation, the mechanics of manifestation of properties, design criteria and means of synthesis of each substructure. The patterns of formation of the fracture route in substructures of all types and substances of each scale level are analyzed. In this case, the development of the stress-strain state of the conglomerate composite according to the principle of energy dissipation, localization and increase (concentration) of stress is realized in the direction from the macro- to the atomic-molecular level of the structure of the composite, and the destruction itself and, accordingly, the formation of the crack route in time and in space of the composite passes in the direction from the atomic-molecular level to the macrolevel in a cascade through all intermediate structural levels. Within the framework of an integrated mechano-physico-chemical approach, the place of thermofluctuation theory (fracture physics) at the stages of breaking single atomic-molecular bonds and crack mechanics at the stages of development of micro- and macrodamage is shown. The possibilities of using theoretical principles of crack route formation to formulate and solve practical problems of designing and synthesizing optimal structures of conglomerate building composites are discussed.

About the Author

A. Iv. Makeev
Voronezh State Technical University
Russian Federation

Makeev Alexey Iv., candidate of sciences, associate professor, associate professor of the department of Technology of Building Materials, Products and Structures

Voronezh



References

1. Belikov V.T. Usloviya realizatsii vozmozhnykh rezhimov razvitiya protsessa razrusheniya tverdogo tela [Conditions for the implementation of possible modes of development of the process of destruction of a solid body]. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2020. No. 2. Pp. 28-39. doi:10.31857/S0572329920010055

2. Dong W., Wu Z., Zhou X. On fracture process zone and crack extension resistance of concrete based on initial fracture toughness // Construction and Building Materials. 2013. Vol. 49. Pp. 352-363. doi:10.1016/j.conbuildmat.2013.08.041

3. Damaskinskaya E.E., Frolov D.I., Panteleev I.A., Gafurova D.R. Identifikatsiya kriticheskogo sostoyaniya deformirovannykh gornykh porod [Identification of the critical state of deformed rocks]. Bulletin of the Engineering School of the Far Eastern Federal University. 2018. No. 1(34). Pp. 116-123. doi:10.5281/zenodo.1196713

4. Kolchunov V.I., Kuznetsova K.Yu., Fedorov S.S. Model' kriteriya treshchinostoykosti i prochnosti plosoknapryazhennykh konstruktsiy iz vysokoprochnogo fibrobetona i fibrozhelezobetona [Model of crack resistance and strength criterion for plane stressed structures made of high-strength fiber-reinforced concrete and fiber-reinforced concrete]. Stroitel'stvo i rekonstruktsiya. 2021. No. 3(95). Pp. 15-26. doi:10.33979/2073-7416-2021-95-3-15-26

5. Ledenev V.V., Odnolko V.G., Nguyen Z.Kh. Teoreticheskiye osnovy mekhaniki deformirovaniya i razrusheniya [Theoretical Foundations of Deformation and Fracture Mechanics]. Tambov: Publishing House of FGBOU VPO "TSTU", 2013. 312 p.

6. Miura T., Sato K., Nakamura H. The role of microcracking on the compressive strength and stiffness of cracked concrete with different crack widths and angles evaluated by DIC./ Cement and Concrete Composites, 2020. Vol. 114. Pp. 103768. doi:10.1016/j.cemconcomp.2020.103768

7. Treschev A.A., Zakharova I.A., Sudakova I.A. O variantakh vybora diagramm deformirovaniya kompozitnykh materialov i ne tol'ko [On options for choosing deformation diagrams for composite materials and not only]. Ekspert: teoriya i praktika. 2022. No. 2(17). Pp. 81-90. doi:10.51608/26867818_2022_2_81

8. Chernyshov E.M., Makeev A.I., Korotkikh D.N. Bazovyye polozheniya mekhaniki proyavleniya konstruktsionnykh svoystv konglomeratnykh stroitel'nykh kompozitov. Chast' 1. Obzor rezul'tatov teoreticheskikh issledovaniy problemy konstruirovaniya i sinteza struktur sovremennykh vysokotekhnologichnykh betonov [Basic provisions of the mechanics of manifestation of structural properties of conglomerate building composites. Part 1. Review of the results of theoretical studies of the problem of designing and synthesizing the structures of modern hightech concretes]. Izvestiya vuzov. Construction. 2020. No. 8. Pp. 43-51 (rus)

9. Chernyshov E.M. Makeev A.I. Materialovedeniye i tekhnologiya stroitel'nykh kompozitov kak sistema nauchnogo znaniya i predmet razvitiya issledovaniy. Chast' 3. Sistemnaya identifikatsiya "konstruktsii struktury" konglomeratnykh stroitel'nykh kompozitov (v kachestvennoy postanovke problemy) [Material science and technology of building composites as a system of scientific knowledge and subject of research development. Part 3. System identification of the "structural structure" of conglomerate building composites (in a qualitative formulation of the problem)] // Izvestia of higher educational institutions. Construction. 2021. No. 3(747). Pp. 5-26. (rus)

10. Sokolova Yu.A., Kondrashchenko V.I., Kesariysky A.G. et al. Raschetno-eksperimental'nyye issledovaniya vnutrennikh napryazheniy v stroitel'nykh materialakh [Calculation and experimental studies of internal stresses in building materials]. Ekspert: teoriya i praktika, 2020. No. 4(7). Pp. 60-65. doi:10.24411/2686-7818-2020-10037

11. Selyaev V.P., Selyaev P.V., Lazarev A.L. et al. Fraktal'naya kvantovo-mekhanicheskaya model' deformirovaniya i razrusheniya betona [Fractal quantum-mechanical model of deformation and destruction of concrete]. Regional'naya arkhitektura i stroitel'stvo. 2022. No. 4(53). Pp. 31-40. doi:10.54734/20722958_2022_4_31

12. Karapetyants M.Kh. Stroyeniye veshchestva [The structure of matter]. M.: Librokom, 2014. 312 p. (rus)

13. Ilyukhin V.V., Kuznetsov V.A., Lobachev A.N., Bakshutov V.S. Gidrosilikaty kal'tsiya. Sintez monokristallov i kristallokhimiya [Calcium hydrosilicates. Synthesis of single crystals and crystal chemistry]. M.: Science. 1979. 184 p. (rus)

14. Kulik D.A., Miron G.D., Lothenbach B. A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model. Cement and Concrete Research. 2022. Vol. 151. Pp. 106585. doi:10.1016/j.cemconres.2021.106585

15. Shkolnik I.E. Effect of nonlinear response of concrete on its elastic modulus and strength. Cement and Concrete Composites, 2005. V. 27. I. 7-8. Pp. 747-757.

16. Regel V.R., Slutsker A.I., Tomashevsky E.E. Kineticheskaya priroda prochnosti tverdykh tel [Kinetic nature of the strength of solids]. M.: Nauka, 1974. 535 p. (rus)

17. Yartsev V.P., Kiseleva O.A. Prognozirovaniye povedeniya stroitel'nykh materialov pri neblagopriyatnykh usloviyakh ekspluatatsii [Predicting the behavior of building materials under adverse operating conditions]. Tambov: Publishing House of the Tambov State Technical University, 2009. 124 p.

18. Chernyshov E. M., Makeev A. I. Tipy podstruktur v tselostnoy polistrukture betona i zakonomernosti formirovaniya parametrov polya napryazheniy v kompozite (k razvitiyu teorii konstruirovaniya i sinteza struktur konglomeratnykh stroitel'nykh kompozitov) [Types of substructures in the integral polystructure of concrete and patterns of formation of stress field parameters in the composite (to the development of the theory of design and synthesis of structures of conglomerate building composites)] // Fundamental, search and applied research of RAASN on scientific ensuring the development of architecture, urban planning and the construction industry of the Russian Federation in 2020: Collection of scientific papers of the RAACS: in 2 volumes / Russian Academy of Architecture and Building Sciences (RAASN). Volume 2. M: DIA Publishing House, 2021. Pp. 304-314. (rus)

19. Vychislitel'nyye metody v mekhanike razrusheniya [Computational methods in fracture mechanics] / Pod. ed. S. Alturi. M.: Mir, 1990. 392 p. (rus)

20. Aktual'nyye problemy chislennogo modelirovaniya zdaniy, sooruzheniy i kompleksov. Tom 2. K 25- letiyu Nauchno-issledovatel'skogo tsentra StaDiO [Actual problems of numerical modeling of buildings, structures and complexes. Volume 2. To the 25th anniversary of the StaDiO Research Center] / Under the general ed. A.M. Belostotsky and P.A. Akimov. M.: Izd-vo ASV, 2016. 596 p. (rus)

21. Korotkikh D.N. Treshchinostoykost' sovremennykh tsementnykh betonov (problemy materialovedeniya i tekhnologii) [Crack resistance of modern cement concretes (problems of materials science and technology)]. Voronezh: Voronezh GASU, 2014. 141 p. (rus)

22. Karpenko N.I. Obshchiye modeli mekhaniki betona [General models of concrete mechanics]. M.: Stroyizdat, 1996. 416 p. (rus)

23. Selyaev V.P., Selyaev P.V. Fiziko- khimicheskiye osnovy mekhaniki razrusheniya tsementnykh kompozitov [Physico-chemical foundations of fracture mechanics of cement composites]. Saransk: Izd-vo Mordov. unta, 2018. 220 p. (rus)

24. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Struktura i prochnost' konstruktsionnykh tsementnykh kompozitov [Structure and strength of structural cement composites]. Saransk, 2015. 360 p.

25. Tran N.T., Park J.K., Kim D.J. [et al.] Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates. Cement and Concrete Research, 2016. Vol. 79. Pp. 169-184. doi:10.1016/j.cemconres.2015.09.011

26. Chernyshov E.M., Korotkikh D.N., Makeev A.I. Bazovyye polozheniya mekhaniki proyavleniya konstruk-tsionnykh svoystv konglomeratnykh stroitel'nykh kompozitov. Chast' 2. Obzor rezul'tatov prikladnykh issledovaniy po probleme konstruirovaniya i sinteza struktur sovremennykh vysokotekhnologichnykh betonov [Basic provisions of the mechanics of manifestation of structural properties of conglomerate building composites. Part 2. Review of the results of applied research on the problem of designing and synthesizing the structures of modern hightech concretes]. Izvestiya vuzov. Stroitel'stvo. 2020. No. 9. Pp. 48-57.

27. Valavi M., Casar Z., Bowen P. [et al.] Molecular dynamic simulations of cementitious systems using a newly developed force field suite ERICA FF. Cement and Concrete Research, 2022. Vol. 154. Pp. 106712. doi:10.1016/j.cemconres.2022.106712


Review

For citations:


Makeev A.I. Formation of the route of the main crack of destruction in the multi-level structure of conglomerate building composites. Building and Reconstruction. 2023;(5):119-131. (In Russ.) https://doi.org/10.33979/2073-7416-2023-109-5-119-131

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)