Preview

Building and Reconstruction

Advanced search

Biostability of cement composites from dry building mixtures

https://doi.org/10.33979/2073-7416-2023-109-5-103-118

Abstract

A study was made of the influence of a model biological environment of the products of the metabolism of filamentous fungi on the biostability of cement composites from industrial dry building mixes for outdoor and indoor work. The low resistance of samples without additional bioprotection to the influence of the biological environment was established. Relevant is the development of cement composites with biocidal additives to ensure resistance to biologically and chemically aggressive environments without reducing the strength properties. The degree of fouling of samples from various types of dry building mixtures in a model environment of metabolic products of filamentous fungi was determined. Eight composites of different composition were studied under the influence of 13 types of model medium. The stability of the samples was established at a concentration of medium components from 0 to 5% by weight. Tile adhesive "UNIS 2000", tile adhesive "Prospectors", putty "Prospectors", facade plaster "KNAUF" have fungus-resistant properties. Putty "CT29 Ceresit". Waterproofing "VodoStopGlims", plaster "IvsilGross" and self-leveling floor "Magma" are non-mushroom resistant. The most unfavorable concentrations of filamentous fungi metabolism products for the samples were revealed. The effectiveness of the use of polymer-based biocidal additives of the Teflex series (OOO SoftPROTECTOR, Russia) on the resistance of cement composites to biodegradation was revealed. The additives "Anti-Salt Wash", "For Metal" and "Universal" showed the greatest efficiency, their use provides fungi resistance and fungicidal properties of building materials.

About the Authors

T. F. Elchishcheva
Tambov State Technical University
Russian Federation

Elchishcheva Tatyana F., candidate of technical sciences, associate professor, head of the department of Architecture and Urban Planning

Tambov



V. T. Erofeev
National Research Mordovia State University
Russian Federation

Erofeev Vladimir T., academician of the Russian Academy of Architecture and Construction Sciences, doctor of technical sciences, professor, director of the Institute of Architecture and Construction, director of the Materials Science Research Institute, Head of the Department of Building Materials and Technologies

Saransk



P. V. Monastyrev
Tambov State Technical University
Russian Federation

Monastyrev Pavel V., corresponding member of RAASN, doctor of technical sciences, associate professor, director of the Institute of Architecture, Construction and Transport

Tambov



E. N. Abramova
National Research Mordovia State University
Russian Federation

Abramova Ekaterina N., сandidate of technical science, Senior Lecturer of the Department of Buildings, Structures and Highways

Saransk



V. V. Afonin
National Research Mordovia State University
Russian Federation

Afonin Viktor V., candidate of technical sciences, associate professor, associate professor of the department of Automated Information Processing and Control Systems

Saransk



I. V. Erofeeva
Moscow State University of Civil Engineering
Russian Federation

Erofeeva Irina V., candidate of technical sciences, senior lecturer of the department «Fundamentals of Architecture and Artistic Communications»

Moscow



A. F. Atmanzin
National Research Mordovia State University
Russian Federation

Atmanzin Alexey F., postgraduate student of the department of building materials and technologies

Saransk



References

1. Botka E.N. Rynok sukhikh stroitel'nykh smesey Rossii: rost nesmotrya ni na chto [Market of dry construction mixtures in Russia: growth in spite of everything] // Cement and its application. 2021. No. 2. Pp. 32-33. (rus)

2. Rynok sukhikh stroitel'nykh smesey v Rossii: issledovaniye i prognoz do 2025 g. [The market of dry building mixes in Russia: research and forecast until 2025]. Issue: April, 2021 [Online] https://roifexpert.ru/stroitelstvo/stroitel-nye-smesi/rynok-suhih-stroitel-nyh-smesej/rynok-suhih-stroitel-nyh-smesej-v-rossiiissledovanie-i-prognoz.html. (date of application: 22.12.2022) (rus)

3. Perevozchikova S.V., Belov V.V. Dry Mix Mortar for Restoration of Buildings // Smart Comprosite in Construction. 2021. Vol. 2. No. 1. Pp. 14-18. doi:10.52957/27821919_2021_1_14.

4. Ostroukh A.V., Wei P.A., Surkova N.E. Analiz sovremennogo sostoyaniya avtomatizatsii protsessa proizvodstva sukhikh stroitel'nykh smesey [Analysis of the current state of automation of the process of production of dry building mixtures]. Mekhanizatsiya stroitel'stvo. 2014. No. 7 (841). Pp. 59-63. (rus)

5. Babeshko А.V., Lesovik V.S., and L. Kh. Teploizolyatsionnyye sukhiye stroitel'nyye smesi na osnove kompozitsionnogo vyazhushchego [Heat-insulating dry building mixtures based on composite binder] // Universitetskaya nauka. 2021. No. 2 (12). Pp. 13-15. (rus)

6. Petropavlovskaya V.B., Novichenkova T.B., Petropavlovskii K.S. and others. Sukhiye stroitel'nyye smesi dlya otdelochnykh izdeliy i proizvodstva vnutrennikh rabot [Dry construction mixtures for finishing products and interior works] // Construction and Reconstruction. 2020. No. 5 (91). Pp.106-115. doi:10.33979/2073-7416-2020-91-5-106-115 (rus)

7. Eferina T.V., Khilov K.V. Rynok sukhikh stroitel'nykh smesey: spetsifika prodvizheniya [The market of dry building mixes: the specifics of promotion] // Building materials – Business. 2005. No. 8. Pp. 10-11. (rus)

8. Medvedeva I.N., Zozulya P.V., Korneev V.I. [Technology of dry building mixtures]. Moscov: Lan, 2019. 372 p. (rus)

9. Barabanshchikov Yu., Gorodilova A., Popova E. Sulphate resistance of waterproofing compounds based on cement containing dry construction mixtures // Alfa Build. 2018. No. 4 (6). Pp. 65-70. doi:10.34910/ALF.6.6

10. Kuzmina V.P. Osobennosti primeneniya sukhikh stroitel'nykh smesey pri provedenii otdelochnykh rabot v razlichnykh klimaticheskikh usloviyakh [Features of the use of dry building mixes during finishing work in various climatic conditions]. Part 2 // Dry building mixes. 2018. No. 6. Pp. 30-36. (rus)

11. Abramov R., Sokolov M., Surilov M. et al. Dry Mixes for Self-Leveling Floors Based on Composite Binder // Key Engineering Materials. 2019. No. 802. Pp. 101-112. doi:10.4028/www.scientific.net/KEM.802.101

12. Rudenko I., Runova R., Omelchuk V. et al. Features of macromolecular compounds in dry mixes based on alkaline cement // Conference: 19. Ibausil. Internationale Baustofftagung At: Weimar, Germany. 2015. Vol. 2. Pp.101-112. doi:10.13140/RG.2.1.4059.2089.

13. Abramova M.G., Panchenko Y.M., Vetrova E.Y. et al. Corrosiveness of the Atmosphere in Various Climatic Regions of the Russian Federation // Protection of Metals and Physical Chemistry of Surfaces. 2021. Vol. 57, No. 7. Pp. 1272-1282. doi:10.1134/S2070205121070029.

14. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovaniy korrozii i sredstv zashchity ot korrozii [Review of foreign experience in corrosion research and corrosion protection] // Aviation materials and technologies. 2015. No. 2 (35). Pp. 76. doi:10.18577/2071-9140-2015-0-2-76-87 (rus)

15. Kablov E.N., Laptev A.B., Prokopenko A.N. and others. Relaksatsiya polimernykh kompozitsionnykh materialov pod dlitel'nym deystviyem staticheskoy nagruzki i klimata (obzor) chast' 1. Svyazuyushchiye [Relaxation of polymeric composite materials under prolonged action of static load and climate (review), part 1. Binders] // Aviation materials and technologies. 2021. No. 4(65). Pp. 70-80. doi:10.18577/2713-0193-2021-0-4-70-80 (rus)

16. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Cravnitel'naya otsenka metodov opredeleniya korrozionnoy agressivnosti atmosfery [Comparative evaluation of methods for determining the corrosive aggressiveness of the atmosphere] // Aviation materials and technologies. 2019. No. 1 (54). Pp. 74-81. doi:10.18577/2071-9140-2019-0-1-74- 81. (rus)

17. Erofeev V.T., Smirnov V.F., Myshkin A.V. The study of species composition of the mycoflora, selected surface samples poliferation composites in humid maritime climate // IOP Conference Series: Materials Science and Engineering. 2019. No. 698 (2). Pp. 022082. doi:10.1088/1757-899X/698/2/022082.

18. Dergunova A., Piksaykina A., Bogatov A. et al. The economic damage from biodeterioration in building sector// IOP Conference (Series: Materials Science and Engineering). 2019. Vol. 698 (7). Pp. 077020. doi:10.1088/1757-899X/698/7/077020

19. Erofeev V., Smirnov V., Myshkin A. The study of polyester-acrylate composite's stability in the humid maritime operating conditions // Materials Today: Proceedings. 2019. Vol. 19. Pp. 2255. doi:10.1016/j.matpr.2019.07.547.

20. Erofeev V.T., Elchishcheva T.F. Issledovaniye nakopleniya soley v naruzhnykh ograzhdayushchikh konstruktsiyakh zdaniy promyshlennykh predpriyatiy [Investigation of salt accumulation in the external enclosing structures of buildings of industrial enterprises] // Izvestiya of higher educational institutions. Technology of the textile industry. 2020. No. 2 (386). Pp. 193-200. (rus)

21. Erofeev V.T., Elchishcheva T.F. Izmeneniye vlazhnosti i teploprovodnosti stroitel'nykh materialov pri nalichii v ikh sostave soley [Change in humidity and thermal conductivity of building materials in the presence of salts in their composition]. Izvestiya of higher educational institutions. Technology of the textile industry. 2020. No. 4 (388). Pp. 18-27. (rus)

22. Chikichev A.A., Belykh S.A., Kudyakov A.I. Gidrofobno-fungitsidnaya dobavka i shtukaturnaya sukhaya smes' na yeye osnove [Hydrophobic-fungicidal additive and plaster dry mix based on it] // Bulletin of MGSU. 2017. Vol. 12. Issue. 105. Pp. 661-668. doi:10.22227/1997-0935.2017.6.661-668. (rus)

23. Urkhanova L., Lkhasaranov S., Badmaeva E. Research of composite binders with nanomodifiers for dry mixes // IOP Conference Series: Materials Science and Engineering. 2020. No. 880. Pp. 012028. doi:10.1088/1757-899X/880/1/012028

24. Wentzel V.I. Teoriya veroyatnosti [Probability Theory]. Moscow: Nauka, 1969. 576 p. (rus)

25. Evdokimov Yu.A., Kolesnikov V.I., Teterin A.I. Planirovaniye i analiz eksperimentov pri reshenii zadach treniya i iznosa [Planning and analysis of experiments in solving problems of friction and wear]. Moscov: Nauka, 1980. 228 p. (rus)

26. Afonin V.V., Nikulin V.V. Metody modelirovaniya i optimizatsii s primerami na yazyke S/S++ i MATLAB. CH. 2. Metody bezuslovnoy optimizatsii [Modeling and optimization methods with examples in C/C++ and MATLAB. Part 2. Methods of unconditional optimization]. Saransk: Publisher Afanasiev V.S., 2017. 231 p. (rus)

27. Goldstein A.L. Optimizatsiya v srede MATLAB [Optimization in the MATLAB environment]. Perm: Perm National Research Polytechnic University. 2015. 192 p. (rus)

28. Glover F. A template for scatter search and path relinking // Lecture Notes in Computer Science. 1997. Pp. 1-51. doi:10.1007/BFb0026589.

29. Sidnyaev N.I. Teoriya planirovaniya eksperimenta i analiz statisticheskikh dannykh. [Theory of experiment planning and analysis of statistical data]. Moscow: Yurayt, 2019. 495 p. (rus)


Review

For citations:


Elchishcheva T.F., Erofeev V.T., Monastyrev P.V., Abramova E.N., Afonin V.V., Erofeeva I.V., Atmanzin A.F. Biostability of cement composites from dry building mixtures. Building and Reconstruction. 2023;(5):103-118. (In Russ.) https://doi.org/10.33979/2073-7416-2023-109-5-103-118

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)