Preview

Building and Reconstruction

Advanced search

THE DEFINITION OF THE GEOMETRIC TORSIONAL RIGIDITY FOR SECTIONS IN THE SHAPE OF THE FIGURE INTERMEDIATE BETWEEN A CIRCLE AND A REGULAR POLYGON

Abstract

The problem of calculating elastic torsion bars is one of the most important today’s problems in the field of structural mechanics. Many construction and engineering structures in the form of bar systems undergo torsional deformation. The geometric stiffness of its cross-sections is determined when calculating such structures in the first place. This physical parameter is used in assessing the stress-strain state of structural elements working on torsion. In the structural mechanics and the elasticity theory, only a few solutions for determining of the geometric stiffness of sections are known in the form of an ellipse, a rectangle, an isosceles triangle. Approximate methods of calculation are used at more complex cross-sections, mostly numerical ones. In the last two decades, in the study and solution of two-dimensional problems of the elasticity theory and the technical theory of plates, the geometric method, the interpolation method of the shape factor (IMSF), actively develops and uses, the basis of which are the isoperimetric properties of the integral geometrical characteristic of the region shape (plates, membranes, sections). This method is applicable for the task of elastic torsion of bars, but to date it has not received a decent development. In this article, with the help of IMSF, the reduced geometric stiffness of cross-sections for bars with sections in the form of figures intermediate between a circle and regular polygons is determined. A circular cross-section and sections in the form of a regular polygon are used as "reference" sections with known values of reduced geometric stiffness. A subset of sections between a circle and a regular polygon is obtained by successive synchronous clipping of its parts from the circle by straight lines, which are parallel to the sides of the regular polygon. Interpolation of "reference" solutions for any sections from the considered subset is carried out by the shape factor. Simple interpolation functions are constructed that allow one to find the desired solution for the considered subset of cross-section forms by elementary formulas using a single argument - the shape factor. The presented in the article graphical depiction of the dependencies "reduced geometric stiffness - the shape factor" makes it possible to visualize the place of the desired solution in the subset of the cross-section forms under consideration.

About the Authors

A. V. Korobko
OSU named after I.S. Turgenev
Russian Federation


Y. E. Balikhina
OSU named after I.S. Turgenev
Russian Federation


References

1. Прочность, устойчивость, колебания: Справочник в трех томах. Под общей редакцией И.А. Биргера и Я.Г. Пановко. - М.: Машиностроение, 1968. - 832 с.

2. Суслов, В.П. Строительная механика корабля и основы теории упругости [Текст] / В.П. Суслов, Качанов Ю.П. Спихтаренко В.Н. - Л.: Судостроение, 1972. - 720 с.

3. Феофанов, А.В. Строительная механика авиационных конструкций [Текст] /А.В. Феофанов. М.: Машиностроение, 1964. - 136 с.

4. Справочник по теории упругости [Текст]. - Киев: Изд-во «Будiвельник, 1974. - 419 с.

5. Коробко, А.В. Геометрическое моделирование формы области в двумерных задачах теории упругости [Текст] / А.В. Коробко. - М.: Изд-во АСВ, 1999. - 302 с.

6. Коробко, В.И. Графическое представление границ изменения геометрической жествкости сечений в виде выпуклых фигур при кручении [Текст] / В.И. Коробко // Известия высших учебных заведений. Машиностроение. - 1986. - № 3. - С. 3-7.

7. Коробко, В.И., Строительная механика пластинок [Текст] / В.И. Коробко, А.В. Коробко. - М.: Издательский дом «Спектр», 2010. - 410 с.

8. Савин, С.Ю. Расчет ортотропных пластин в виде правильных многоугольников с однородными граничными условиями [Текст] / С.Ю. Савин, В.И. Коробко // Строительство и реконструкция. - 2011. - № 1. - С. 3-11.

9. Савин, С.Ю. Изгиб ортотропных пластинок в виде параллелограмма с однородными и комбинированными граничными условиями [Текст] / Савин, С.Ю., В.И. Коробко, // Строительная механика и расчет сооружений. - 2012. - № 2. - С. 18-23.

10. Черняев, А.А. Определение максимального прогиба ромбических пластинок с комбинированными граничными условиями с использованием отношения конформных радиусов [Текст] / А.А. Черняев, В.И. Коробко // Строительная механика инженерных конструкций и сооружений. - 2011. - № 4. - С. 21-25.

11. Черняев, А.А. К вопросу расчета пластинок средней толщины из условий жесткости [Текст] / А.А. Черняев // Региональная архитектура и строительство. - 2012. - № 1. - С. 83-89.


Review

For citations:


Korobko A.V., Balikhina Y.E. THE DEFINITION OF THE GEOMETRIC TORSIONAL RIGIDITY FOR SECTIONS IN THE SHAPE OF THE FIGURE INTERMEDIATE BETWEEN A CIRCLE AND A REGULAR POLYGON. Building and Reconstruction. 2017;(5):21-26. (In Russ.)

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)