SHEAR CRACK RESISTANCE OF REINFORCED CONCRETE TAPERED BEAMS
https://doi.org/10.33979/2073-7416-2023-108-4-65-80
Abstract
Despite the widespread use of tapered beams, the features of their stress-strain state remain poorly understood, including in regions near curvatures of the faces.A lot of experimental studies have shown that in tapered beams, shear cracks occurs not only in the support zone, but also in the middle of the span directly at the apex, even without shear force.
Based on the full-scale tests of tapered beams and finite element analyses, diagrams of shear and transverse stresses are constructed. The data obtained revealed differences in the stress distribution in tapered and linear beams. The features of the stress-strain state of the tapered beams are associated with the occurrence of shear stresses from the action of the bending moment and longitudinal force due to the variable depth of the section of the element, as well as with the formation of local stress fields in areas near the curvatures of the faces.
The proposed analytical dependences allow us to calculate shear and transverse stresses in the apex zone of tapered beams and determine the moment of occurrence of shear cracks in the specified zone.
About the Authors
N. V. MatweenkoBelarus
Matweenko Nikifor V., senior researcher ofindustry laboratory «Research Center for Innovations in Building»
Brest
V. N. Malinovsky
Belarus
Malinovsky Vasilij N., candidate in technical sciences, docent, professor of the department of building constructions
Brest
E. S. Matweenko
Belarus
Matweenko Elizaveta S., trainee teacherof the department of building constructions
Brest
References
1. Malinovsky V.N., Krivitsky P.V., Matveenko N.V. Usovershenstvovannyĭ variant konstruktivnogo resheniia zhelezobetonnykh stropilʹnykh balok [Improved version of the constructive decision reinforced concrete beams]. Vestnik of Brest State Technical University. 2013. No. 1 (79) : Building and Architecture. Pp. 128–131. (rus).
2. Magnel G. Les applications du béton précontraint en Belgique. Bulletin technique de la Suisse romande. Мars., 1949. annee 75 (No. 7). P. 77–82.
3. Leonhardt F Continuous Prestressed Concrete Beams. Journ. of ACI. Mar., 1953. Vol. 22.No. 7. Pp. 617– 634.
4. Gorozhanskiĭ IU. F. Preimushchestva zameny staticheskoĭ skhemy sbornykh zhelezobetonnykh ram dlia odnoėtazhnogo promyshlennogo stroitelʹstva [Benefits of replacing the static scheme of precast concrete frames for single-story industrial construction] // Respublikanskoĭ nauchno-tekhnicheskoĭ konferen tsii: tezisy dokladov [Republican scientific and technical conference: abstracts]. Brest: BISI, 1968. Pp. 42–47. (rus).
5. Debaiky S.Y., Elniema E.I. Behavior and Strength of Reinforced Concrete Haunched Beams in Shear. Journ. of ACI. May-June, 1982. Vol. 79. No. 3. Pp. 184–194.
6. Mseer F., Alwash N. The behavior of tapered one-way continuous two-span reinforced concrete slabs under repeated load. Periodicals of Engineering and Natural Sciences. June 2022. Vol. 10. No. 3. Pp. 387–396.
7. Tena-Colunga A. Archundia-Aranda H. I., Grande-Vega A., González-Cuevas O. M. Cyclic shear behavior of reinforced concrete haunched beams. Proceedings of Ninth Canadian Conference on Earthquake Engineering. Ottawa, Ontario, Canada, 2007. Pp. 184–194.
8. Caldentey A.P., Padilla P., Muttoni A., Ruiz M. F. Effect of Load Distribution and Variable Depth on Shear Resistance of Slender Beams without Stirrups. ACI Structural Journal. September-October, 2012. Vol. 109. No. 5. Pp. 595–603.
9. Shuo T., Okubo K., Niwa J. The Shear Behavior of RC Tapered Short Beams with Stirrups. Journal of Advanced Concrete Technology. September 2019. Vol. 17. Pp. 506–517. http://doi.org/10.3151/jact.17.9.506.
10. Hou Ch., Nakamura T., Iwanaga T., Niwa J. Shear behavior of reinforced concrete and prestressed concrete tapered beams without stirrups. Journal of JSCE. 2017. Vol. 5. Pp.170–189.
11. Saba S.H.A., Mazin B. A., Bassam A. T. Response of Reinforced Concrete Tapered Beams Strengthened Using NSM-CFRP Laminates. Tikrit Journal of Engineering Sciences. 2022. No. 29 (1). Pp. 99–110. http://doi.org/10.25130/tjes.29.1.8.
12. Jasim M. Dh., Nimnim H. T. Structural behavior of reinforced concrete pre-stressed tapered beams. Periodicals of Engineering and Natural Sciences February. 2023. Vol. 11. No. 1. Pp. 223–238.
13. Matveenko N.V., Malinovsky V.N. K issledovaniiu napriazhenno-deformirovannogo sostoianiia konʹkovoĭ zony balok krivolineĭ-nogo ochertaniia [To research of the stress-strain state of ridge area of the curved beam]. Journal of Science and Education of North-West Russia. 2018. Vol. 4. No. 5. Pp. 9–17. (rus).
14. Krivitsky P.V., Matveenko N.V. Ėksperimentalʹnye issledovaniia soprotivleniia izgibu s poperechnoĭ siloĭ prednapriazhennykh zhelezobetonnykh balok priamolineĭnogo i lomanogo ochertaniia [Experimental studies of the flexure with shear force resistance of straight and broken configuration prestressed concrete beams]. Vestnik Polotskogo gosudarstvennogo universiteta. 2021. № 8 : Seriya F. Stroitel'stvo. Prikladnye nauki. Pp. 87–93. (rus).
15. Jolly A. Vijayan V. Structural behaviour of reinforced concrete haunched beam a study on ANSYS and ETABS. International Journal of Innovative Science, Engineering & Technology. August 2016. Vol. 3 Issue 8. Pp. 495–500.
16. Pham T. D., Hong W. K. Investigation of strain evolutions in prestressed reinforced concrete beams based on nonlinear finite element analyses considering concrete plasticity and concrete damaged plasticity. Journal Of Asian Architecture And Building Engineering. 2022. Vol. 21. No. 2. Pp. 448–468. https://doi.org/10.1080/13467581.2020.1869014.
17. Khaleel I.S., Movahedi R.M. Reliability‑based probabilistic numerical plastically limited analysis of reinforced concrete haunched beams. Sci Rep 13, 2670 (2023). https://doi.org/10.1038/s41598-023-29930-0.
18. Nikulina Yu.A. Opredelenie treshchinostoĭkosti predvaritelʹno napriazhennykh zhelezobetonnykh balok trape tsi-evidnogo poperechnogo secheniia [Determination of crack resistance of prestressed reinforced concrete beams of trapezoidal cross-section]. Bulletin of BSTU named after V.G. Shukhov. 2021. No. 11. Pp. 41–48. doi:10.34031/2071- 7318-2021-6-11-41-48.
19. Snezhkina O.V. Treshchinostoĭkostʹ zhelezobetonnykh balok s malym i srednim proletom sreza [Cracking resistance of reinforced concrete beams with small and medium span]. Regional architecture and engineering. 2021. No. 3. Pp. 123–128.
20. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivlenie materialov [Material resistance]. M. : Vysshaia shkola, 2003. 560 p.
21. Zalesov A.S., Ilʹin O.F. Treshchinostoĭkostʹ naklonnykh secheniĭ zhelezobetonnykh ėlementov [Crack resistance of inclined sections of reinforced concrete elements]. re el n e s st ianiia le ent hele bet nn kh k nstr k tsi : sb. nauch. tr. [Limit states of elements of reinforced concrete structures: collection of scientific papers]. Moscow. 1976. Pp. 56–68.
Review
For citations:
Matweenko N.V., Malinovsky V.N., Matweenko E.S. SHEAR CRACK RESISTANCE OF REINFORCED CONCRETE TAPERED BEAMS. Building and Reconstruction. 2023;(4):65-80. (In Russ.) https://doi.org/10.33979/2073-7416-2023-108-4-65-80