TAKING INTO ACCOUNT FLEXIBILITY WHEN CALCULATING THE STRENGTH OF CENTRALLY COMPRESSED SQUARE-SECTION TUBULAR CONCRETE COLUMNS
https://doi.org/10.33979/2073-7416-2023-108-4-47-56
Abstract
The method of calculating the load-bearing capacity of centrally compressed tubular concrete columns of square section is considered. The technique is based on the use of a nonlinear deformation model of reinforced concrete. Accepted deformation diagrams of concrete core and steel pipe take into account their complex stress state. The proposed method takes into account the variable stiffness of different sections in height of the compressed rod when assessing the effect of its flexibility. The maximum load corresponding to the loss of strength or stability of the element is determined by the same method using the same formulas. As a result, there is no need for a separate formula for calculating the critical force. A comparison of theoretical and experimental data indicates the acceptability of the proposed calculation methodology for project practice.
About the Authors
A. L. KrishanRussian Federation
Krishan Anatoly L., doctor of technical sciences, professor of the department of design and construction of buildings
Magnitogorsk
V. I. Rimshin
Russian Federation
Rimshin Vladimir Iv., Corresponding member of the RAASN, doctor of technical sciences, professor of the department of housing and communal complex
Moscow
M. A. Astafieva
Russian Federation
Astafieva Maria An., candidate of technical sciences, associate professor of the department of design and construction of buildings
Magnitogorsk
A. A. Stupak
Russian Federation
Stupak Alexandra Al., postgraduate student of the department of design and construction of buildings
Magnitogorsk
S. M. Anpilov
Russian Federation
Anpilov Sergey M., doctor of technical sciences, associate professor, professor of the department of reinforced concrete structures
Novosibirsk
References
1. Gupta P., Singh, H. Numerical study of confinement in short concrete filled steel tube columns. Latin American Journal of Solids and Structures. 2014. Vol. 11. Pp. 1445-1462. doi:10.1590/S1679-78252014000800010.
2. Huang C.S., Yeh Y.-K., Liu G.-Y., Hu H.-T., Tsai K.C., Weng Y.T., Wang S.H.,Wu M.-H. Axial Load Behavior of Stiffened Concrete-Filled Steel Columns. Journal of Structural Engineering-asce. 2002. Vol. 128. Pp. 1222–1230. doi:10.1061/(ASCE)0733-9445(2002)128:9(1222).
3. Giakoumelis G., La, D. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research. 2004. Vol. 60. Pp. 1049-1068.
4. Lv J., Zhou, T., Li, K. Investigation and Application of a New Low-Carbon Material (Preplaced Aggregate Concrete) in Concrete-Filled Steel Tube Stub Columns. Sustainability. 2020. Vol. 12. P. 1768.
5. Schneider S.P. Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering. 1998. Vol. 124. Pp. 1125–1138.
6. Yu Z.-W., Ding F.-X., Cai C. Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research. 2007. Vol. 63. Pp. 165–174.
7. Zhang Q., Kamiński P., Deifalla A.F., Sufian M., Dyczko A., Ben Kahla N., Atig M. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Materials. 2022. Vol. 15. P. 4209.
8. Ahmed M, Liang Q.Q, Patel V.I, Hadi M.N.S. Experimental and numerical studies of square concretefilled double steel tubular short columns under eccentric loading. Journal Engineering Structures. 2019. Vol. 197. P. 109419.
9. Auogh P., Sulong N.H.R., Ibrahim Z., Hsiao P-C. Nonlinear analysis of concrete-filled square doubleskin steel tubular columns under axial compression. Engineering Structures. 2020. Vol. 216. doi.org/10.1016/j.engstrukt.2020.110678.
10. Cao B., Zhu L., Jiang X., Wang C. An Investigation of Compression Bearing Capacity of Concrete-Filled Rectangular Stainless Steel Tubular Columns under Axial Load and Eccentric Axial Load. Sustainability. 2022. Vol. 14. P. 8946. doi:10.3390/su14148946.
11. Du Y., Chen Z., Xiong M.-X. Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel. Journal Construction and Building Materials. 2016. Vol. 125. Pp. 856–872.
12. Krishan A.L., Troshkina E.A., Astafeva M.A. Strength of compressed concrete filled steel tube elements of circular and square cross- section. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 451. No. 012053. doi:10.1088/1757-899X/451/1/012053.
13. Zhu J-Y, Chan T-M. Experimental investigation on steel-tube-confined-concrete stub column with different cross-section shapes under uniaxial-compression. Journal of Constructional Steel Research. 2019. Vol. 162. P. 105729.
14. Wei Y, Zhang Y., Chai J., Wu G., Dong Z. Experimental investigation of rectangular concrete-filled fiber reinforced polymer (FRP)-steel composite tube columns for various corner radii. Composite Structures. 2020. Vol. 244. P. 112311. doi:10.1016/j.compstruct.2020.112311
15. Goode C.D.,; Kuranovas A., Kvedaras A.K. Buckling of Slender Composite Concrete-Filled Steel Columns. Journal of Civil Engineering and Management. 2010. Vol. 16. Pp. 230–236.
16. Huang Z., Li D., Uy B., Wang J. Behaviour and design of ultra- high- strength CFST members subjected to compression and bending. Journal of Constructional Steel Research. September 2020. doi:10.1016/j.jsr.2020.106351.
17. Le T.T, Asteris P.G and Lemonis M.E. Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques. Engineering with Computers. 2021. doi:10.1007/s00366-021- 01461-0
18. Shaker F.M.F., Ghanem G.M., Deifalla A.F.,; Hussei, I.S., Fawzy M.M. Influence of loading method and stiffening on the behavior of short and long CFST columns. Steel and Composite Structures. 2022. Vol. 44. Pp. 281–293.
19. Uy B., Tao Z., Han L-H. Behaviour of short and slender concrete-filled stainless steel tubular columns. Journal of Constructional Steel Research. 2011. Vol. 67. Pp. 360-378.
20. Ding F., Ying X., Zhou L., Yu Z. Unified calculation method and its application in determining the uniaxial mechanical properties of concrete. Frontiers of Architecture and Civil Engineering in China. 2011. Vol. 5. Pp. 381-393. doi:10.1007/s11709-011-0118-6.
21. Krishan A.L., Rimshin V.I., Astafyeva M.A. Compressed pipe concrete elements. Theory and practice. Moscow: DIA; 2020. 375 p.
Review
For citations:
Krishan A.L., Rimshin V.I., Astafieva M.A., Stupak A.A., Anpilov S.M. TAKING INTO ACCOUNT FLEXIBILITY WHEN CALCULATING THE STRENGTH OF CENTRALLY COMPRESSED SQUARE-SECTION TUBULAR CONCRETE COLUMNS. Building and Reconstruction. 2023;(4):47-56. (In Russ.) https://doi.org/10.33979/2073-7416-2023-108-4-47-56