PARAMETERIZATION OF REQUIREMENTS OF CORROSION PROTECTABILITY OF STRUCTURAL STEEL
https://doi.org/10.33979/2073-7416-2023-108-4-33-46
Abstract
Basic provisions are presented of scientific and methodological substantiation of corrosion protectability of steel structures and installations. Priorities have been analyzed of improving existing codes, taking into account scientific achievements and international standards. Tasks have been formulated for increasing competitiveness and resource saving through the use of effective measures of corrosion protection. The study is aimed at parameterization of a mechanism of technical regulation of quality, reliability and safety, approval and application of materials and technologies, procedures, services in the field of corrosion protection at the request of a digital consumer. A process-oriented methodology is proposed aimed at a continuous improvement of development cycles and models of the rational choice of systems of corrosion protection of structures. With that, corrosion protection of structural steel is defined by the level of reliability and required parameters of technical and economic protection. The management structure is defined by the provisions of organization standard in accordance with ISO 12944, SP 28.1330.2017 with regard to corrosion protection of structural steel.
The levels have been analyzed of reliability of structures and their protective coatings, with account for the procedures for assessing compliance of quality, monitoring and risk diagnostics based on the limit states method. Parameter compliance is affirmed based on five DMAIC principles related to determination, measurement, analysis, improvement and monitoring technical condition of structures. Examples are presented of statistical estimation of representative samples of corrosion impacts, characteristic values of corrosion resistance and durability of steel structures and their protective coatings. Proposed are methods for functional and time redundancy of corrosion protection assurance. Load testswere carried outof models of steel structures with corrosion damage.
The obtained results reveal uncertainty of parameters of corrosion state and allow assessing structural steel survivability with account for acceptable risk. Suggestions for parametric design are recommended for digital transformation of the system of technical and economic regulators of corrosion protectability.
About the Authors
V. P. KorolovRussian Federation
Korolov Vladimir P., doctor in technical sciences, professor, professor of department of Civil Engineering, Architecture and Design
Mariupol
I. V. Kushchenko
Russian Federation
Kushchenko Igor V., candidate in technical sciences, acting rector of Priazovsky State Technical University
Mariupol
E. An. Bocharova
Russian Federation
Bocharova Elena An., senior lecturer of department of Civil Engineering, Architecture and Design
Mariupol
References
1. Streleckij N.S. Izbrannye Trudy [Selected works]. Moscow: Strojizdat, 1975. 422 p.
2. Mrázik A. Teória spoґahlivosti oceґových konštrukcií. Sloven. akad. vied. Úst. stavebníctva a architektúry SAV. Bratislava: VEDA, 1987. 360 p.
3. Meinen N.E., Steenbergen R.D.J.M. Reliability levels obtained by Eurocode partial factor design – A discussion on current and future reliability levels. HERON. 2018. Vol. 63. No 3. Pp. 243-302. URL:https://heronjournal.nl/63-3/63-3.ht
4. Pichugin S.F. Reliability estimation of industrial building structures. Magazine of Civil Engineering. 2018. No 83(7). Pp. 24-37. doi:10.18720/MCE.83.3.
5. Solovyev S.A., Solovyeva A.A. Structural reliability analysis using evidence theory and fuzzy probability distributions. Magazine of Civil Engineering. 2021. No 107(7). Article No 10704. doi:10.34910/MCE.107.4.
6. Mammedov K.A., Hamidova N.S., Huseynova U.K. Diagnosis of the corrosion state of hydraulic structures in the Caspian Sea in order to prevent environmental damage. Bulletin of National Academy of Sciences of the Republic of Kazakhstan. 2020. Vol. 3. No 385. Pp. 111-118. URL:https://doi.org/10.32014/2020.2518–1467.76
7. Zajec B. et al. Corrosion Monitoring of Steel Structure Coating Degradation. Materials Science. Tehnički Vjesnik [Technical Gazette]. 2018. No 25, 5. Pp. 1348-1355. doi:10.17559/TV-20170206004112.
8. Lapidus A. A., Topchiy D. V. Organizaciya rabot po obsledovaniyu zdanij i sooruzhenij [Organization of Works on Inspection of Buildings and Structures]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2023. No 3. Рp. 12-15. (In Russian). doi:10.33622/0869-7019.2023.03.12-15.
9. Travush V.I., Fedorova N.V. Survivability of structural systems of buildings with special effects. Magazine of Civil Engineering. 2018. No 81(5). Pp. 73–80. doi:10.18720/MCE.81.8.
10. Androsova N.B., Kolchunov V.I. Zhivuchest' karkasno-sterzhnevogo zhelezobetonnogo zdaniya pri avarijnom vozdejstvii [Survivability of the frame-rod reinforced concrete building framework in accidental action]. Stroitel'stvo rekonstirukciya [Building and Reconstruction]. 2021. No 5. Рp. 40-50. URL:https://doi.org/10.33979/2073-7416-2021-97-5-40-50.
11. David J. Smith. Reliability, Maintainability and Risk: Practical Methods for Engineers. Butterworth-Heinemann, 2021. 516 p. URL:https://www.amazon.com/Reliability-Maintainability-Risk-PracticalEngineers/dp/0323912613/ref=sr_1_8?crid=3I3X9NQDEGOAI&keywords=economic+risks+industrial+facilities&qid=1676202320&s=books&sprefix=economic+risks+industrial+facilities%2Cstripbooks-intl-sh
12. Alekseytsev A.V., Gaile L., Drukis P. Optimization of steel beam structures for frame buildings subject to their safety requirements. Magazine of Civil Engineering. 2019. No 91(7). Pp. 3-15. doi:10.18720/MCE.91.1.
13. Gorokhov E.V. [at al]. Dolgovechnost' stal'nyh konstrukcij v usloviyah rekonstrukcii. [Durability of steel structures under reconstruction conditions]. Moscow: Strojizdat, 1992. 488 p.
14. Di Sarno L., Majidian A., Karagiannakis G. The Effect of Atmospheric Corrosion on Steel Structures: A State-of-the-Art and Case-Study. Buildings. 2021. No 11(12). Р. 571. URL: https://doi.org/10.3390/buildings11120571
15. Fedotov S.D., Ulybin A.V., Shabrov N.N. O metodike opredeleniya korrozionnogo iznosa stal'nyh konstrukcij [The methodology of determining the corrosion of steel structures]. Inzhenerno-stroitel'nyj zhurnal [Magazine of Civil Engineering]. 2013. No 1. Pp. 12-20. doi:10.5862/MCE.36.2.
16. Korolov V.P. Metodicheskij podhod k obespecheniyu rabotosposobnosti metallokonstrukcij v usloviyah korrozionnoj opasnosti [Methodological approach to ensuring the serviceability of metal structures under corrosion hazard conditions]. Stroitelstvo i Rekonstruktsiya [Building and Reconstruction]. 2019. No 4 (84). Pp. 70-82. doi:10.33979 / 2073-7416-2019-84-4-70-82.
17. Mohan Dr. S. J., Chitra R., Thendral S. Limit State Method of Design for Steel Structures. International Journal of Pure and Applied Mathematics. 2018. Vol. 119. No 12. Pp. 9169-9181.
18. Zolina T.V., Sadchikov P.N. Residual resource of a one-storey steel frame industrial building constructed with bridge cranes. Magazine of Civil Engineering. 2018. No 84(8). Pp. 150-161. doi:10.18720/MCE.84.15.
19. Tusnin A.R., Berger M.P. Zavisimost' koefficienta dinamichnosti ot zhestkosti ferm pri raznyh vidah lokal'nyh razrushenij [Dependence of the dynamic coefficient on rigidity of trusses in case of versatile local failures]. Vestnik MGSU [Vestnik MGSU]. 2023. No 18(2):202-217. doi:10.22227/1997- 0935.2023.2.202-217.
20. Topchiy D. V. Perspektivy razvitiya sistemy obrazovaniya specialistov stroitel'nogo kontrolya [Prospects for the Development of the Education System for Construction Control Specialists]. Promyshlennoe i grazhdanskoe stroitel'stvo [Industrial and Civil Engineering]. 2023. No 3. Pp. 4-11. doi:10.33622/0869-7019.2023.03.04-11.
21. Korolov V.P., German G.A. Formirovanie proektnyh trebovanij na osnove upravleniya korrozionnoj zashchishchennost'yu stal'nyh konstrukcij [Formation of design requirements based on the management of structural steel corrosion protectability]. Vestnik MGSU [Vestnik MGSU]. 2020. Vol. 15. No 4. Pp. 518-532. doi:10.22227/1997-0935.2020.4.518-532.
22. Korolov V.P., Ryzhenkov A.A., Korolov P.V. Evolyuciya konceptual'nyh podhodov k upravleniyu korrozionnoj zashchishchennost'yu stal'nyh konstrukcij i sooruzhenij [Evolution of Conceptual Approaches of Management of Corrosion Protection of Steel Structures and Facilities]. Promyshlennoe i grazhdanskoe stroitelstvo [Industrial and civil Engineering]. 2022. No 8. Pp. 32 – 40. doi:10.33622/0869-7019.2022.08.32-40
23. Likhtarnikov Ya.M. Variantnoye proyektirovaniye i optimizatsiya stalnykh konstruktsiy [Trial design and optimization of structural steel]. Moscow: Stroyizdat, 1979. 319 p.
24. Shimanovsky A.V. [at al]. Tekhnicheskaya diagnostika i preduprezhdenie avarijnyh situacij konstrukcij zdanij i sooruzhenij [Technical diagnostics and prevention of accident cases for buildings and installations]. Kiev: Stal' [Steel], 2008. 462 p.
25. MacGinley T.J. Steel Structures. Practical design studies. London and New York: E&FN SPON, 1998. 184 p.
26. AISC 325-17: Steel Construction Manual. American Institute of Steel Construction. 15th Edition. 2017. 2324 p. URL:https://www.casresource.com/product/aisc-325-17-steel-construction-manual-fifteenth-edition/
27. Shopov A. Theoretical-Computation Conception for Forecasting on Corrosion Influence into Steel Elements at Sustainable Development International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2019. Vol. 8. Issue 8. June. Pp. 2253-2261. URL:https://www.ijitee.org/wpcontent/uploads/papers/v8i8/H7152068819.pdf
Review
For citations:
Korolov V.P., Kushchenko I.V., Bocharova E.A. PARAMETERIZATION OF REQUIREMENTS OF CORROSION PROTECTABILITY OF STRUCTURAL STEEL. Building and Reconstruction. 2023;(4):33-46. (In Russ.) https://doi.org/10.33979/2073-7416-2023-108-4-33-46