Preview

Building and Reconstruction

Advanced search

BEARING CAPACITY OF PRECAST FLOOR SLABS WITH PARTIALLY CONCRETED STEEL BEAMS

https://doi.org/10.33979/2073-7416-2023-108-4-19-32

Abstract

The issues of modern construction with the use of precast reinforced concrete slabs as part of composite steel and concrete structures are considered. The rationale for the chosen research topic is given. The description and features of experimental models of the studied structures, materials and their characteristics are presented. The features of the support and loading of the models are given. The analysis of the results of testing prisms for shear and models of composite steel and concrete beams and full-sized ofcomposite steel and concrete slabs for bending is carried out. The types and nature of the destruction of models are presented, a table of destructive loads is formed. Graphs of displacements and stresses in structural elements are given. The evaluation of the existing calculation methods, their comparison with the experimental results is given. An assessment of the effect of partial concreting of steel I-beams as part of prefabricated composite steel and concrete structure and its effect on the loadbearing capacity is given.

About the Authors

D. V. Konin
TSNIISK named after V. A. Koucherenko JSC Research Center of Construction
Russian Federation

Konin Denis.V., сandidate of technical science, deputy director for scientific work

Moscow



A. S. Krylov
TSNIISK named after V. A. Koucherenko JSC Research Center of Construction
Russian Federation

Krylov Aleksey S., сandidate of technical science,leading researcher of the Laboratory of high-rise buildings and structures of the department of metal structures

Moscow



S. S. Kaprielov
NIIZHB named after A.A. Gvozdev JSC Research Center of Construction
Russian Federation

Kaprielov Semyon S., Academician of the RAASN, doctor of technical sciences, head of the laboratory of chemical additives and modified concrete

Moscow



I. A. Chilin
NIIZHB named after A.A. Gvozdev JSC Research Center of Construction
Russian Federation

Chilin Igor A., researcher of the laboratory of chemical additives and modified concrete

Moscow



I. V. Rtischeva
TSNIISK named after V.A. Koucherenko JSC Research Center of Construction
Russian Federation

Rtischeva Irina V., senior researcher of the laboratory of high-rise buildings and structures of the department of metal structures

Moscow



L. S. Rozhkova
TSNIISK named after V.A. Koucherenko JSC Research Center of Construction
Russian Federation

Rozhkova Lidia S., senior researcher of the laboratory of high-rise buildings and structures of the department of metal structures

Moscow



References

1. Braun M. Experimentelle Untersuchungen von Slim-Floor-Trägern in Verbundbauweise. Untersuchungen zur Verbundwirkung von Betondübeln. Matthias Braun. Stahlbau 83. 2014. Heft 10. P. 746–754; Heft 5. P. 302–308.

2. Lam D. Composite steel beams using precast concrete hollow core floor slabs: PhD thesis. Dennis Lam. University of Nottingham, UK, 1998. 303 p.

3. Lam D. Designing composite beams with precast hollowcore slabs to Eurocode 4. D. Lam. Advanced Steel Construction. 2007. Vol. 3. No. 2. P. 594-606.

4. Hicks S. J. Design of Composite Beams Using Precast Concrete Slabs. S. J. Hick, R. M. Lawson. The Steel Construction Institute. Silwood Park. Ascot. Berkshire, 2003. 98 p. (SCI Publication P287).

5. Rackham J. W. Design of Asymmetric Slimflor Beams with Precast Concrete Slabs. J W Rackham, S J Hicks G M Newman. The Steel Construction Institute. Silwood Park. Ascot. Berkshire, 2006. 101 p. (SCI Publication P342).

6. Way A.G.J. Precast Concrete Floors in Steel Framed Buildings. A.G.J. Way, T.C. Cosgrove, M.E. Brettle. The Steel Construction Institute. Silwood Park. Ascot. Berkshire, 2007. 101 p. (SCI Publication P351).

7. Ahmed I.M. The evolution of composite flooring systems: applications, testing, modelling and eurocode design approaches. I.M. Ahmed, K.D. Tsavdaridis. Journal of Constructional Steel Research. 2019. No. 155. Pp. 286-300.

8. Lawson R.M. Stal' v mnogoetazhnyh zhilyh zdaniyah [Steel in Multi-Storey Residential Buildings]. R. M. Lowson, R. Dzh. Ogden, Dzh. V. Rekkhem. Institut stal'nyh konstrukcij. (SCI) Silwood Park, Ascot, Berkshire SL5 7QN (Velikobritaniya), 2004. 68 p. (SCI P332).

9. Goralski C. Zusammenwirken von Beton und Stahlprofil bei kammerbetonierten Verbundträgern: PhD Dissertation. Claus Robert Goralski. Aachen, Germany, 2006. 218 p.

10. Ferreira F.P.V. Steel–Concrete-Composite Beams with Precast Hollow-Core Slabs: A Sustainable Solution. F.P.V. Ferreira, K.D. Tsavdaridis, C.H. Martins, S. De Nardin. Sustainability. 2021. 13, 4230. [Online] URL:https://doi.org/10.3390/su13084230.

11. Tusnin A.R. Features of finite element analysis of steel-reinforced concrete slabs from hollow core slabs. A.R. Tusnin, A.A. Kolyago. IOP Conf. Series: Materials Science and Engineering. 2018. No. 456 012095. 6 p.

12. Tusnin A.R. Konstrukciya i rabota stalezhelezobetonnogo perekrytiya s ispol'zovaniem sbornyh pustotnyh zhelezobetonnyh plit [The construction and operation of the composite beams using the prefabricated reinforced concrete slab hollow core]. A.R. Tusnin, A.A. Kolyago. Sovremennaya nauka i innovacii. 2016. No 3. Pp. 141 – 147.

13. Zamaliev F.S. Raschetno-eksperimental'nye issledovaniya stalezhelezobetonnyh konstrukcij [Computational and experimental studies of steel–reinforced concrete structures]. F.S. Zamaliev, V.V. Filippov. Industrial and civil construction. 2015. No. 7. Pp.29-36.

14. Zamaliev F.S. Eksperimental'nye issledovaniya nachal'nogo napryazhenno-deformirovannogo sostoyaniya stalezhelezobetonnyh balok i plit [Experimental studies of the initial stress-strain state of steel-reinforced concrete beams and plates]. F.S. Zamaliev, E.G. Bikkinin et al. Izvestiya KGASU. 2015. No. 2(32). Pp.149-153.

15. Veselov A.A. Napryazhenno-deformirovannoe sostoyanie stalezhelezobetonnoj balki [The stress-strain state of a steel-reinforced concrete beam]. A.A. Veselov, S.O. Chepilko. Bulletin of Civil Engineers. 2010. No. 2 (23). Pp. 31-37.

16. Salama T. Effective Flange Width for Composite Steel Beams. T. Salama, H.H. Nassif. The Journal of Engineering Research. 2011. Vol. 8. No. 1. Pp. 28-43.

17. Travush V. I. Opredelenie nesushchej sposobnosti na sdvig kontaktnoj poverhnosti «stal'-beton» v stalezhelezobetonnyh konstrukciyah dlya betonov razlichnoj prochnosti na szhatie i fibrobetona [Determination of the bearing capacity for shear of the contact surface “steel-concrete” in steel-reinforced concrete structures for concrete of various compressive strength and fiber concrete]. V.I. Travush, S.S. Kaprielov, D.V. Konin, etc. Construction and reconstruction. 2016. No. 4 (66). Pp. 45-55. (In Russian).

18. Travush V.I. Strength of composite steel and concrete beams of high-performance concrete. V.I. Travush, D.V. Konin, A.S. Krylov. Magazine of Civil Engineering. 2018. No. 3 (79). Pp. 36–44.

19. Arleninov P.D. Sovremennoe sostoyanie nelinejnyh raschetov zhelezobetonnyh konstruktsij [The current state of nonlinear calculations of reinforced concrete structures]. P.D. Arleninov, S.B. Krylov. Sejsmostojkoe stroitel'stvo. Bezopasnost' sooruzhenij. 2017. No. 3. Pp. 50–53.

20. Shchetkova E.A. Povyshenie prochnosti scepleniya pri sdvige v zone kontakta «stal'-beton» [Increasing the shear adhesion strength in the “steel-concrete” contact zone]. E.A. Shchetkova, G.G. Kashevarova. Vestnik grazhdanskih inzhenerov. Sankt-Peterburgskij arhitekturno-stroitel'nyj universitet. No. 6. 2015. Pp. 70-75.


Review

For citations:


Konin D.V., Krylov A.S., Kaprielov S.S., Chilin I.A., Rtischeva I.V., Rozhkova L.S. BEARING CAPACITY OF PRECAST FLOOR SLABS WITH PARTIALLY CONCRETED STEEL BEAMS. Building and Reconstruction. 2023;(4):19-32. (In Russ.) https://doi.org/10.33979/2073-7416-2023-108-4-19-32

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)