Preview

Building and Reconstruction

Advanced search

DEFORMATION STABILITY OF PVC WINDOWS UNDER TEMPERATURE LOADS

https://doi.org/10.33979/2073-7416-2023-108-4-5-18

Abstract

Experience in operating PVC windows in the climatic conditions of the Russian Federation shows that they are subject to significant temperature deformation. Temperature deformations of PVC windows lead to a decrease in their operational and technical characteristics. Nevertheless, at present the calculation of these structures for the action of temperature loads is not performed. This is due, among other things, to the fact that the methods for calculating the plastic deformation of PVC windows under the action of temperature loads have not yet been developed. The development of this methodology is the purpose of the present research. It was proposed to divide a window construction into profile combinations and to consider the profile combination as a single calculation element. By introducing a number of simplifications, a calculation scheme of profile combination was created. A universal form of a system of differential equations describing deformation of a combination of profiles was obtained. A general form solution for this system of equations has been obtained which takes into account temperature bending of window profile elements, impact of IGU rigidity, conditions of profile fixing, point forces and moments, which enables to calculate the strain-stress state o f any structure which can be represented as a set of combination of profiles. A condition limiting temperature deformations of a window structure has been proposed. It consists in ensuring the window seal deformations not exceeding its operating range, which can be verified using the described calculation methodology.

About the Author

I. S. Aksenov
National Research Moscow State University of Civil Engineering
Russian Federation

Aksenov Ivan S., engineer at the Facade Systems Research Center

Moscow



References

1. Boriskina I.V., Plotnikov A.A., Zakharov A.V. Proektirovanie sovremennykh okonnykh sistem grazhdanskikh zdaniy [Modern window systems designing for civil buildings]. Moscow: Izdatel'stvo ABC, 2003. 320 p. (rus)

2. Anur'ev V.I. Spravochnik konstruktora-mashinostroitelya. V 3 t. T. 1 [Handbook of the mechanical engineer in 3 vol. Vol. 1]. Moscow: Mashinostroenie, 2001. 920 p. (rus)

3. Verkhovskiy A., Bryzgalin V., Lyubakova E. Thermal Deformation of Window for Climatic Conditions of Russia. IOP Conf. Series: Materials Science and Engineering. 2018. No. 463. 032048.

4. Konstantinov A., Verkhovsky A. Assessment of the Wind and Temperature Loads Influence on the PVC Windows Deformation. IOP Conference Series: Materials Science and Engineering. 2020. No. 3 (753). 032022.

5. Eldashov Yu.A., Sesyunin S.G., Kovrov V.N. Eksperimental'noe issledovanie tipovykh okonnykh blokov na geometricheskuyu stabil'nost' i privedennoe soprotivlenie teploperedache ot deystviya teplovykh nagruzok [Experimental study of typical window units for geometric stability and reduced heat transfer resistance when exposed to thermal loads]. Vestnik MGSU. 2009. No. 3. Pp. 146–149. (rus)

6. Elmahdy A.H. Air leakage characteristics of windows subjected to simultaneous temperature and pressure differentials. Window Innovations. 1995. Pp. 146–163.

7. Henry R., Patenaude A. Measurements of window air leakage at cold temperatures and impact on annual energy performance of a house. ASHRAE Transactions. 1998. No. Pt 1B (104). Pp. 1254–1260.

8. Shekhovtsov A.V. Vozdukhopronitsaemost' okonnogo bloka iz PVKh profiley pri deystvii otritsatel'nykh temperatur [Air permeability of the window unit made of PVC profiles at negative temperatures]. Vestnik MGSU. 2011. No. 1 (3). Pp. 263–269. (rus)

9. Verkhovskiy A.A., Zimin A.N., Potapov S.S. Primenimost' sovremennykh svetoprozrachnykh ograzhdayushchikh konstruktsiy dlya klimaticheskikh regionov Rossii [Applicability of modern translucent structures for climatic regions of Russia]. Zhilishchnoe stroitel'stvo. 2015. No. 6. Pp. 16–19. (rus)

10. Konstantinov A., Verkhovsky A. Assessment of the Negative Temperatures Influence on the PVC Windows Air Permeability. IOP Conference Series: Materials Science and Engineering. 2020. No. 2 (753). 022092.

11. Kunin Yu.S., Alekperov R.G., Potapova T.V. Zavisimost' vozdukhopronitsaemosti svetoprozrachnykh konstruktsiy ot temperaturnykh vozdeystviy [Dependence of air permeability of translucent structureson temperature impacts]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2018. No. 10. Pp. 114–120. (rus)

12. Konstantinov A., Verkhovsky A., Lyabakova E. Sound insulation of PVC windows at negative outdoor temperatures. IOP Conf. Series: Materials Science and Engineering. 2020. No. 1 (896). 012054.

13. Konstantinov A.P., Verkhovskiy A.A. Vliyanie otritsatel'nykh temperatur na teplotekhnicheskie kharakteristiki okonnykh blokov iz PVKh profiley [The effect of negative temperatures on the thermal performance of window units made of PVC profiles]. Stroitel'stvo i rekonstruktsiya. 2019. No. 83 (3). Pp. 72–82. (rus)

14. Gnyrya A. I. et. al. Vliyanie infil'tratsii kholodnogo vozdukha na soprotivlenie teploperedache steklopaketa [Influence of cold air infiltration on the thermal transmittance of the insulating glass unit]. Izvestiya VUZov. Stroitel'stvo. 1999. No. 3 (2). Pp. 102–105. (rus)

15. Emel'yanov R.T., Revenko V.V. Otsenka vliyaniya izmeneniya estestvennogo vozdukhoobmena na energopotreblenie zdaniya s uchetom pokazatelya germetichnosti sovremennykh okon [Assessment of the impact of changes in natural air exchange on the energy consumption of the building, taking into account the airtightness index of modern windows]. Molodoy uchenyy. 2018. No. 188 (2). Pp. 21–25. (rus)

16. Vesnin V.I. Infil'tratsiya vozdukha i teplovye poteri pomeshcheniy cherez okonnye proemy [Air infiltration and room heat loss through window openings]. Vestnik SGASU. Gradostroitel'stvo i arkhitektura. 2016. No. 24 (3). Pp. 10–16. (rus)

17. Halle S. et al. The Combined Effect of Air Leakage and Conductive Heat Transfer in Window Frames and Its Impact on the Canadian Energy Rating Procedure. AIVС. 1998. SF-98-12-3 (4108).

18. Elghamry R., Hassan H. Impact of window parameters on the building envelope on the thermal comfort, energy consumption and cost and environment. International Journal of Ventilation. 2020. No. 4 (19). Pp. 233–259.

19. Wang L., Greenberg S. Window operation and impacts on building energy consumption. Energy and Buildings. 2015. No. 92. Pp. 313–321.

20. Heydari A., Sadati S. E., Gharib M. R. Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering. 2021. No. 35. 102099.

21. Choi Y., Ozaki A., Lee H. Impact of Window Frames on Annual Energy Consumption of Residential Buildings and Its Contribution to CO2 Emission Reductions at the City Scale. Energies. 2022. No. 10 (15). 3692.

22. Cuce E. Role of airtightness in energy loss from windows: Experimental results from in-situ tests. Energy and Buildings. 2017. No. 139. Pp. 449–455.

23. Chen S. et. al. Measured air tightness performance of residential buildings in North China and its influence on district space heating energy use. Energy and Buildings. 2012. No. 51. Pp. 157–164.

24. Sesyunin S.G., Eldashov Yu.A. Modelirovanie sopryazhennoy zadachi termouprugosti na primere analiza variantov konstruktivnogo oformleniya okonnogo bloka zdaniy [Simulation of the coupled problem of thermoelasticity on the example of a window unit structural design analysis]. Svetoprozrachnye konstruktsii. 2005. No. 4. (rus)

25. Vlasenko D.V. Pochemu korobit okno. Kto vinovat i chto delat'? [Why the window is crooked. Who is to blame and what to do?]. Okonnoe proizvodstvo. 2014. No. 39. Pp. 42–44. (rus)

26. Kalabin V.A. Otsenka velichiny teplovoy deformatsii PVKh-profilya. Chast' 2. Letnie poperechnye deformatsii [Estimation of the value of thermal deformation of PVC profiles. Part 2. Summer transverse deformations]. Svetoprozrachnye konstruktsii. 2013. No 3. Pp. 12–15. (rus)

27. Kalabin V.A. Otsenka velichiny teplovoy deformatsii PVKh-profilya. Chast' 1. Zimnie poperechnye deformatsii [Estimation of the value of thermal deformation of PVC profile. Part 1. Winter transverse deformations]. Svetoprozrachnye konstruktsii. 2013. No. 2 (1). Pp. 6–9. (rus)

28. Aksenov I.S., Konstantinov A.P. Uproshchennyy podkhod k modelirovaniyu uplotnitelya dlya prochnostnogo rascheta okonnykh konstruktsiy [A simplified approach to the window gasket modeling for window strength calculation]. Vestnik MGSU. 2021. No. 3 (16). Pp. 317–330. (rus)

29. Aksenov I.S., Konstantinov A.P. Analiticheskiy metod rascheta napryazhenno-deformirovannogo sostoyaniya okonnykh profiley PVKh pri deystvii temperaturnykh nagruzok [An analytical method for calculating the stress-strain state of PVC window profiles under thermal loading]. Vestnik MGSU. 2021. No. 11. Pp. 1437–1451. (rus)

30. Aksenov I.S., Konstantinov A.P. Analiticheskiy raschet slozhnogo napryazhenno-deformirovannogo sostoyaniya armirovannogo PVKh profilya pri temperaturnoy nagruzke [Analytical Calculation of the Complex Stress-Strain State of Reinforced PVC Profile under Temperature Load]. Zhilishchnoe stroitel'stvo. 2022. No. 11. Pp. 19–28. (rus)

31. Tsvey A.Yu. Balki i plity na uprugom osnovanii. Lektsii s primerami rascheta po spetsial'nomu kursu stroitel'noy mekhaniki: ucheb. posobie [Beams and slabs on elastic foundation. Lectures with examples of calculations in a special course of structural mechanics: textbook.]. Moscow: MADI, 2014. 96 p. (rus)


Review

For citations:


Aksenov I.S. DEFORMATION STABILITY OF PVC WINDOWS UNDER TEMPERATURE LOADS. Building and Reconstruction. 2023;(4):5-18. (In Russ.) https://doi.org/10.33979/2073-7416-2023-108-4-5-18

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)