Preview

Building and Reconstruction

Advanced search

Multi-comfort environment in the architecture of pre-restructed buildings

https://doi.org/10.33979/2073-7416-2023-107-3-96-110

Abstract

The problems of prefabrication, cost-effectiveness, strength and energy efficiency of  buildings of residential and civil architecture are becoming especially relevant at the present time, due to the need to quickly restore the destroyed cities and villages in the newly annexed territories. For the purpose of an experimental proposal for a residential building project based on the concept of multicomfort, an analysis of the development of industrial construction methods was carried out. A review of the evolutionary development of industrial housing construction made it possible to identify its advantages (speed of construction, low cost, simplicity of design solutions, etc.), disadvantages (low quality and comfort level, standard stamps, etc.) and ways to eliminate them (increased comfort, energy efficiency, development new constructive solutions, artistic expressiveness, planning variability, etc.). The authors propose the development of a project for a prefabricated residential building based on innovative frame-type panels manufactured in the factory. These structures are quickly mounted on the construction site, they are characterized by increased rigidity, survivability and material consumption. This constructive system provides an opportunity to create flexible architectural and planning solutions with a variety of plastic shapes of the building. Energy efficiency and multicomfort environment of a residential building is achieved by the orientation of the building on the designed site, the use of insulating materials and glazing (reduction of heat loss and noise protection). The shape of the building also ensures the thermal comfort of the yard space. Wind currents are broken by protruding and sinking architectural elements, creating complex and meaningful compositional connections. The use of new industrial structures allows, using the principles of energy-efficient design, to increase the level of comfort and efficiency of a residential building, solve the problems of viability and quick erection of buildings, and create an expressive architectural and artistic appearance of the residential environment.

About the Authors

O. V. Volichenko
Southwestern State University
Russian Federation

Volichenko Olga V. , doctor of architecture, professor of the department of architecture, urban planning and graphics.

Kursk



A. V. Lityagina
Southwestern State University
Russian Federation

Lityagina Arina V.student of the department of architecture, urban planning and graphics

Kursk



References

1. Le Korbyuz'e. Arhitektura ХХ veka [20th century architecture]. M.: Progress, 1977. 306 p. (rus)

2. Vorob'ev V.S., Sidorenko I.L. Krupnopanel'noe domostroenie: istoricheskaya neobhodimost' i perspektivnaya tekhnologiya stroitel'noj otrasli [Large-panel housing construction: historical necessity and promising technology of the construction industry] // Vestnik Sibirskogo gosudarstvennogo universiteta putej soobshcheniya. 2022. Nо. 1(60). Рр. 130-1 39. doi:10.52170/1815-9265_2022_60_130 (rus)

3. Kalabin A.V., Kukovyakin A. B., Massovaya zhilaya zastrojka: problemy i perspektivy [Мass residential development. Problems and prospects] // Akademicheskij vuestnik UralNIIproekt RAASN. 2017. Nо. 3 (34). Рр. 55-60.

4. Kazin A.S. Industrial'noe domostroenie: vchera, segodnya, zavtra [Industrial housing construction: yesterday, today, tomorrow] // Zhilishchnoe stroitel'stvo. 2018. Nо. 10. Рр. 22-26. (rus)

5. Nikolaev S.V. Obnovlenie zhilishchnogo fonda strany na baze krupnopanel'nogo domostroeniya [Renovation of the country's housing stock on the basis of large-panel housing construction] // Zhilishchnoe stroitel'stvo. 2018. Nо. 10. Рр. 17-21. (rus)

6. Pavlenko D.V., SHmelev S.E., Kuznecov D.V., Sapronov D.V., Fisenko S.S., Damrina N.V. Universal'naya sistema sbornogo domostroeniya RB-YUg ot idei do voploshcheniya na stroitel'noj ploshchadke [Universal system of prefabricated housing construction RB-South from idea to implementation at the construction site] // Stroitel'nye materialy. 2019. Nо. 3. Рр. 4-10. doi:10.31659/0585-430X-2019-768-3-4-10 (rus)

7. Caritova N.G., Kurbanov A. I., Kurbanova A. A. Energoeffektivnye zdaniya na osnove transformiruemyh karkasov [Еnergy-efficient buildings based on transformable frames] // Stroitel'stvo i rekonstrukciya. 2022. Nо. 6(104). Рр. 91 -103. https://doi.org/10.33979/2073-7416-2022-104-6-91 -103 (rus)

8. Baghdadi A., Heristchian M., Kloft H. Connections placement optimization approach toward new prefabricated building systems // Enginering structures. 2021. Vol. 233. [Online]. URL:https://www.sciencedirect.com/science/article/abs/pii/S0141029620342498 (date of application: 07.05.2023).

9. Duan Y., Li G. Analysis on the Quality Problems and Preventive Measures of Prefabricated Building Construction // Jornal of physics. Conferens series. 2020. Vol. 1648. Is. 3. [Online]. URL:https://iopscience.iop.org/article/10.1088/1742-6596/1648/3/032141/meta (date of application: 07.05.2023).

10. Niemela T., Kosonen R., Jokisalo J. Energy performance and environmental impact analysis of constoptimal renovation solutions of large panel apartment building in Finland // Sustainable cites and society. 2017. Vol. 32. Pр. 9-30.

11. Blaauwendraal J. Stringer-panel models in structural concrete: applied to D-region design / Cham: Springer, 2018. 99 p.

12. Gidion Z. Prostranstvo, vremya, arhitektura [Raum, Zeit, Architektur]. Moskva: Strojizdat., 1984. 458 р. (rus)

13. Mironov A. V. Filosofiya arhitektury: tvorchestvo Le Korbyuz'e [Philosophy of architecture: the work of Le Corbusier]. Moskva: Maks Press, 2012. 289 р. (rus)

14. Polyakov E.N., Polyakova O.P. SHvejcarskij period (1887–1917) v zhizni i tvorchestve SHarlya-Eduara ZHannere-Gri (Le Korbyuz'e) [The Swiss period (1 887–1917) in the life and work of Charles-Edouard Jeanneret-Gris (Le Corbusier)] // Vestnik Tomskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. 2021. T. 23. Nо. 3. Рр. 9–20. doi:10.31675/1607-1859-2021 -23-3-9-20 (rus)

15. Ocherki teorii i istorii kultury XX veka /Otv. red. YU V Petrov [Essays on the theory and history of culture of the XX century]. Tomsk: Tomskij gosudarstvennyj universitet, 2007. 440 p. (rus)

16. Olejnik P.P., Pahomova L.A. Modelirovanie vozvedeniya zhilyh domov iz krupnogabaritnyh blokov [Modeling the construction of residential buildings from large blocks]. Vestnik MGSU. 2023. T. 18 (3). Рр. 463-470. doi:10.22227/1997-0935.2023.3.463-470 (rus)

17. Somov G. YU. 1986. Plastika arhitekturnoj formy v massovom stroitelstve [Plasticity of architectural form in mass construction]. M.: Strojizdat, 1986. 206 p. (rus)

18. Zhdanova I.V. Metody povysheniya kachestva serijnoj zhiloj zastrojki 70-80-h gg. XХ v. [Methods for improving the quality of serial residential development in the 70-80s. 20th century] // Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2012. Nо. 1. Рр. 22-26. (rus)

19. Samye bystrye strojki mira [The fastest construction sites in the world]. URL:https://www.cre.ru/analytics/83393 (data obrashcheniya 11.04.2023) (rus)

20. Sochalin O. Kitajskie inzhenery vozveli mnogoetazhnyj zhiloj dom za 28 chasov [Chinese engineers built a multi-storey residential building in 28 hours]. URL: https://inlnk.ru/4yMPpp (data obrashcheniya 11.04.2023) (rus)

21. Logvinov V. Ot «zelenogo stroitelstva» k prirodointegrirovannoj arhitekture. Princip ispolzovaniya form. Chast 2 [From «green building» to nature-integrated architecture. The principle of using forms. Part 2] // Proekt Bajkal. 2018. T. 15. Nо. 55. Pр. 156-163. doi:10.7480/projectbaikal.55.1310. (rus)

22. Badin G.M. Tekhnologii stroitelstva i rekonstrukcii energoeffektivnyh zdanij [Technologies of construction and reconstruction of energy efficient buildings]. SPb.: BHV-Peterburg, 2017. 464 p. (rus)

23. Kustova D., Truhacheva G. Energoeffektivnaya arhitektura: Osobennosti proektirovaniya energoeffektivnyh zhilyh kompleksov dlya razlichnyh socialnyh grupp naseleniya [Energy Efficient Architecture: Features of Designing Energy Efficient Residential Complexes for Various Social Groups of the Population]. London: LAP LAMBERT Academic Publishing, 2015. 64 p. (rus)

24. Il'ichev V. A., Emel'yanov S.G., Kolchunov V.I., Bakaeva N.V. Innovacionnye tekhnologii v stroitelstve gorodov. Biosfernaya sovmestimost i chelovecheskij potencial [Innovative technologies in the construction of cities. Biospheric Compatibility and Human Potential]: uchebnoe posobie. M.: Izdatelstvo ASV, 2019. 208 p. (rus)

25. Prokoshev S.A., Syrchin N.A., Turbinov A.R., Lapin V.I., Rakov N.D. Osobennosti planirovochnoj struktury mnogoetazhnyh zhilyh domov s vozobnovlyaemymi istochnikami energii [Features of the planning structure of multi-storey residential buildings with renewable energy sources]// Innovacii i investicii. 2018. Nо. 3. Pр. 245-248. (rus)

26. Volichenko O.V. Vzaimnoe tyagotenie i protivorechie prirodnyh i arhitekturnyh form (evolyucionnyj aspekt) [Mutual attraction and contradiction of natural and architectural forms (evolutionary aspect)] // Arhitekton: izvestiya vuzov. 2011. Nо. 3(35). Pр. 6. (rus)

27. Patent № 2790148 C1 Rossijskaya Federaciya, MPK E04B 1/02. Zdanie iz panelnyh elementov [Panel building]: № 2022121477: zayavl. 08.08.2022: opubl. 14.02.2023 / V.I. Kolchunov, V. S. Moskovceva, N.V. Fedorova, S.YU. Savin; zayavitel Federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniya «Yugo-Zapadnyj gosudarstvennyj universitet». (rus)

28. Volichenko O. V. Vliyanie mejnstrimov zapadnogo avangarda v arhitekture Centralnoj Azii [Influence of mainstream Western avant-garde in the architecture of Central Asia]// Arhitekton: izvestiya vuzov. 2013. Nо. 1(41). Рр. 29-39. (rus)

29. De Garrido L. Arquitectura para la felicidad. Madrid: Institute Monsa de Ediciones, 2013. 96 р.

30. Binici H., Aksogan O., Demirhan C. Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials //Sustainable Cities and Society. 2016. V. 20. Рр. 17-26.

31. Yuan J., Farnham C., Emura K. Optimum insulation thickness for building exterior walls in 32 regions of China to save energy and reduce CO2 emissions // Sustainability. 2017. V. 9 (10). Pр. 1 -13.

32. Volichenko O.V. Metody ekologicheskogo proektirovaniya zhilyh zdanij na primere goroda Bishkek [Methods of ecological design of residential buildings on the example of the city of Bishkek] // Biosfernaya sovmestimost: chelovek, region, tekhnologii. 2022. Nо. 2(38). Рр. 81-97. doi:10.21869/2311-1518-2022-38-2-81-97. (rus)


Review

For citations:


Volichenko O.V., Lityagina A.V. Multi-comfort environment in the architecture of pre-restructed buildings. Building and Reconstruction. 2023;(3):96-110. (In Russ.) https://doi.org/10.33979/2073-7416-2023-107-3-96-110

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)