Preview

Building and Reconstruction

Advanced search

Influence of structural and technological factors on indicators of transversal reinforcement of reinforced concrete beams

https://doi.org/10.33979/2073-7416-2023-107-3-42-57

Abstract

The paper considers the influence of various factors on the actual length of clamps in the design of sections of linear bending reinforced concrete elements. The aim of the work is to determine the degree of influence of clamps of various configurations and other factors on the length of the clamp at various cross-sectional dimensions of a linear bending element. The obtained data and dependences make it possible to obtain the most effective solutions for reinforcing inclined sections with minimal cost. The calculation-analytical research method was used, based on the analysis of the results of calculations for  various  types of transverse reinforcement, the ratio of the diameters of the longitudinal and transverse reinforcement, the values of the protective layer, the radius of the bend of the clamp and the dimensions of the section. An expression is proposed for calculating the actual length of the clamp, depending on the dimensions of the section, the coefficient of reinforcement and the thickness of the protective layer, taking into account the mandrels used.
Graphs of the change in the length of the collar for various section sizes b×h from 20×40 cm to 55×80 cm and with a reinforcement coefficient of 0.1%≤μ≤3% have been obtained. The graphs show savings in the length of the clamp from 6.7-7.4%, when using working fittings Ø6, to 12.2-37.9%, when using working fittings Ø40. The dependencies of strength reduction under conditions of inaccurate binding of the working longitudinal reinforcement to the collars are analyzed. The data obtained indicate a decrease in the strength of normal sections of beams from 0.33% to 10.78%. The paper considers the influence of various factors in the design of the sections of linear bending elements on the actual length of the clamps in accordance with accepted standards. Thanks to the obtained data and dependences, it is possible to refine the consumption of transverse reinforcement in beams for its more economical use.

About the Authors

Yu. A. Shaposhnikova
Moscow State University of Civil Engineering
Russian Federation

Shaposhnikova Yulia A. candidate in technical sciences, associate professor, associate professor of the department of Reinforced Concrete and stone Structures.

Moscow



V. S. Kuznetsov
Moscow State University of Civil Engineering
Russian Federation

Kuznetsov Vitaly S.candidate in technical sciences, professor.

Moscow



References

1. Tamrazyan А.G., Alekseytsev A.V. Optimization of reinforced concrete beams under local mechanical and corrosive damage. Engineering Optimization. 2022. doi.org/10.1080/0305215X.2022.2134356

2. Chakrabarty B.K. Models for optimal design of reinforced concrete beams. Journal of Structural Engineering. 1992. Vol. 118. No. 11 . doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3238)

3. Coello C.C., Hernandez F.S. and Farrera F.A. Optimal design of reinforced concrete beams using genetic algorithms. Journal of Intelligent Learning Systems and Applications. 2014. Vol. 6. No. 4. doi.org/10.1016/S0957-4174(96)00084-X

4. Garstecki A., Glema A., Ścigałło J. Optimal design of reinforced concrete beams and frames. Computer Assisted Mechanics and Eng. Sciences. 1996. No. 3 (3). Pp. 223-231.

5. Demby M., Ścigałło J. Design aspects of the safe structuring of reinforcement in reinforced concrete bending beams. Modern building materials, structures and techniques, MBMST 2016. Procedia Engineering 172. 2017. Pp. 211 -217. doi:10.1016/j.proeng.2017.02.051

6. Kuznetsov V.S., Shaposhnikova Y.A., Yandiev A.A. Selection of the optimal parameters of a reinforced concrete rectangular beam with single reinforcement. IOP Conference Series: Materials Science and Engineering. 2020. No. 962 (2): 022055. doi:10.1088/1757-899X/962/2/022055

7. Jensen B.C. and Łapko A. On shear reinforcement design of structural concrete beams on the basis of theory of plasticity. Journal of Civil Engineering and Management. 2009. No. 15 (4). Рp. 395-403. doi.org/10.3846/1392-3730.2009.15.395-403

8. Minelli F. and Plizzari G.A. Shear design of FRC members with little or no conventional shear reinforcement. Ailor Made Concrete Structures – Walraven & Stoelhorst (eds). 2008. doi:10.1201/9781439828410.ch100

9. Balakaj A.A., Cyganov M.V., Alejnik D.V., Dmitrenko E.A. Zavisimost' nesushhej sposobnosti naklonnyh sechenij na dejstvie poperechnoj sily ot izmenenija dliny proekcii naklonnogo sechenija [The dependence of the bearing capacity of inclined sections on the action of the shear force on the change in the length of the projection of the inclined section] // Vestnik Donbasskoj nacional'noj akademii stroitel'stva i arhitektury [Donbas National Academy of Civil Engineering and Architecture]. 2020. No. 4 (144). Pp. 50-55 (rus)

10. Filatov V.B., Arcybasov A.S., Bagautdinov M.A., Gordeev D.I., Kortunov A.I., Nikitin R.A. Analiz raschetnyh modelej pri raschete prochnosti naklonnyh sechenij zhelezobetonnyh balok na dejstvie poperechnyh sil [Analysis of the design models for calculating the strength of inclined sections of reinforced concrete beams on the action of shear forces ] // Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk [Samara State University of Architecture and Civil Engineering]. 2014. Vol. 16. No. 4-3. Pp. 642-645 (rus)

11. Snezhkina O.V., Eginov Je.V., Ladin R.A. Ocenka vlijanija vertikal'nyh homutov na prochnost' zhelezobetonnyh balok pri dejstvii poperechnyh sil [Evaluation of the effect of vertical clamps on the strength of reinforced concrete beams under the action of transverse forces] // Regional'naja arhitektura i stroitel'stvo [Regional architecture and construction]. 2014. No. 3. Pp. 57-61 (rus)

12. Silant'ev A.S., Luchkin E.A. Rabota izgibaemyh jelementov po naklonnym sechenijam s jeks-tremal'no malym proletom sreza [The shear resistance of bending elements with extremal small shear span] // Beton i zhelezobeton [Concrete and reinforced concrete]. 2020. No. 2 (602). Pp. 28-33 (rus)

13. Tihonov I.N., Savrasov I.P. Issledovanie prochnosti zhelezobetonnyh balok s armaturoj klassa A500 pri dejstvii poperechnyh sil [Study of the strength of reinforced concrete beams with reinforcement class A500 under the action of transverse forces] // Zhilishhnoe stroitel'stvo [Housing Construction]. 2010. No. 9. Pp. 32-37 (rus)

14. Aksjonov N.B., Zadorozhnaja A.V., Trofimova V.M., Sinicina T.V., Nazarov A.V. Issledovanie vlijanija otklonenij polozhenija rabochej armatury ot proektnogo na prochnost' bezbalochnyh perekrytij [Investigation of the influence of the deviations of the position of the working armature from the project on the bearing strength of the overlap] // Inzhenernyj vestnik Dona [Engineering journal of Don]. 2018. No. 2 [Online] URL:ivdon.ru/uploads/article/pdf/IVD_113_Aksionov.pdf_91646016dd.pdf (date of application: 05.01.2023) (rus)

15. Jakovlev S.N., Pozdeev V.M. Issledovanie zhelezobetonnyh mnogopustotnyh plit perekrytij s defektom smeshhenija rabochej armatury putem naturnyh ispytanij [Investigation of reinforced concrete multi-hollow floor slabs with a displacement defect of working reinforcement by field tests] // Inzhenernye kadry - budushhee innovacionnoj jekonomiki Rossii [Engineering personnel - the future of the innovative economy of Russia]. 2016. No. 5. Pp. 89-92 (rus)

16. Campione G., Monaco A., Minafò G. Shear strength of high-strength concrete beams: Modeling and design recommendations // Engineering Structures. 2014. No. 69 (9). Pp. 116-122. doi:10.1016/j.engstruct.2014.02.029

17. Zhuowei Wang A., Yufeng Liao and Weilun Wang. Effect of longitudinal reinforcement ratio and effective depth on shear capacity of PVA fiber high strength RC beams // Advances in engineering research (AER). 2nd International Conference on Material Science. Energy and Environmental Engineering (MSEEE 2018). 2018. Vol. 169. doi:10.2991/mseee-18.2018.52

18. Kuznetsov B.C., Kuznetsov A.B., Smirnov M.N. Normativnye dopuski kak faktory riska snizhenija dolgovechnosti stroitel'nyh ob’ektov [Regulatory tolerances as risk factors for reducing the durability of construction objects] // Stroitel'nye materialy, oborudovanie, tehnologii XXI veka [Building materials, equipment, technologies XXI]. 2005. No. 5 (76). Pp. 80-81 (rus)

19. Kuznetsov B.C., Prokuronova E.A. Geometricheskie dopuski kak faktory riska snizhenija dolgovechnosti zhelezobetonnyh jelementov [Geometric tolerances as risk factors for reducing the durability of reinforced concrete elements] // Stroitel'nye materialy, oborudovanie, tehnologii XXI veka [Building materials, equipment, technologies XXI]. 2006. No. 7 (90). Pp. 22-23. (rus)

20. Korchagin O.P., Zonina S.V. O specifike raschjotov izgibaemyh zhelezobetonnyh konstrukcij po naklonnym sechenijam [On the specifics of calculations of bent reinforced concrete structures along inclined sections] // Social'no-jekonomicheskie i tehnicheskie sistemy: issledovanie, proek-tirovanie, optimizacija [Socio-economic and technical systems: research, design, optimization]. 2018. No. 1 (77). Pp. 12-20 (rus)

21. Kuznetsov V., Shaposhnikova Y. The cost of flexible elements of a rectangular profile // XIV International Scientific Conference «Interagromash 2021». Lecture Notes in Networks and Systems. 2022. Vol. 247. Pp. 33–40. doi:10.1007/978-3-030-80946-1_4

22. Kuznetsov V.S., Shaposhnikova Y.A. The structure of the content and cost of materials in bending reinforced concrete element with variable section height // Lecture Notes in Civil Engineering. 2021. Vol. 151. Pp. 181 – 187. doi:10.1007/978-3-030-72910-3_26

23. Merta I., Kolbitsch A., Kravanja S. Cost optimization of reinforced concrete beams // Sixth International Conference Concrete under Severe Conditions Environment & Loading. At: Mérida. Yucatán. México. 2010. [Online]. URL:researchgate.net/publication/282132306_Cost_Optimization_of_Reinforced_Concrete_Beams (date of application: 05.01.2023).

24. Sutjagin A.E. Prakticheskij sposob raschjota poperechnoj armatury v balkah [A practical way to calculate transverse reinforcement in beams] // Nauka i bezopasnost' [Science and security]. 2012. No. 4. Pp. 65-69 (rus)

25. Duhanin P.V., Makshanov N.Ja. Opredelenie dopustimyh tehnologij dlja osushhestvlenija pope-rechnogoarmirov anija armaturnogo karkasa s uchetom uslovij i faktorov proizvodstva [Determination of acceptable technologies for the implementation of transverse reinforcement of the reinforcing cage, taking into account the conditions and factors of production] // Rostovskij nauchnyj zhurnal [Rostov scientific journal]. 2017. No. 6. Pp. 301 -307 (rus)

26. Radkevich A.V., Netesa A.N. Opredelenie i ranzhirovanie organizacionno-tehnologicheskih faktorov, obuslovlivajushhih racional'nye reshenija soedinenija armatury [Determination and ranking of organizational and technological factors that determine rational solutions for rebar connection] // Nauka i progress transporta. Vestnik Dnepropetrovskogo nacional'nogo universiteta zheleznodorozhnogo transporta [Science and progress of transport. Bulletin of the Dnepropetrovsk National University of Railway Transport]. 2017. No. 3 (69). [Online]. URL:cyberleninka.ru/article/n/opredelenie-i-ranzhirovanie-organizatsionno-tehnologicheskih-faktorovobuslovlivayuschih-ratsionalnye-resheniya-soedineniya/viewer (date of application: 05.01.2023) (rus)

27. Kuznecova S.V., Simakov A.L., Rozhkov A.N., Mamin Ju.A., Varnavskaja T.V. Raschet otklonenija poperechnyh sechenij armatury pri avtomatizirovannoj gibke [Calculation of the deviation of the cross sections of reinforcement during automated bending] // Vіsnik nacіonal'nogo tehnіchnogo unіversitetu Ukraїni «Kiїvs'kij polіtehnіchnij іnstitut». Serіja: Priladobuduvannja [Bulletin of the National Technical University of Ukraine «Kyiv Polytechnic Institute». Series: Instrumentation]. 2015. No. 50 (2). Pp. 106-114 (rus)

28. Biswas L. How to calculate cutting length of stirrups in beam and colum. [Online]. Civil Read. 2018. URL:civilread.com/cutting-length-stirrups/ (date of application: 05.01.2023).


Review

For citations:


Shaposhnikova Yu.A., Kuznetsov V.S. Influence of structural and technological factors on indicators of transversal reinforcement of reinforced concrete beams. Building and Reconstruction. 2023;(3):42-57. (In Russ.) https://doi.org/10.33979/2073-7416-2023-107-3-42-57

Views: 198


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)