Statistical characteristics of the numerical model uncertainties for steel elements
https://doi.org/10.33979/2073-7416-2023-107-3-17-34
Abstract
The use of numerical models to assess the resistance (load bearing capacity) and serviceability of new and existing structures is one of the most important achievements of recent decades for civil engineers. The numerical model, like any other model, has uncertainties that need to be established and taken into account when ensuring the structural reliability. At the same time, the statistical characteristics of the uncertainty of numerical models remain the least studied. The purpose of the study is to develop and scientifically substantiate the design based on numerical models of loadbearing capacity. The object of the study is the parameters of numerical models and statistical characteristics of the uncertainty of the numerical result. The main objectives of the case study include: (i) analysis of the sensitivity of the results from variations in the parameters of numerical models; (ii) verification of the parameters of numerical models based on experimental data; (iii) calculation of statistical characteristics of the uncertainty of the numerical model, which are expected to be used in the future in the development of the safety format and the normalization of the values of partial reliability factors.
About the Author
V. V. NadolskiBelarus
Nadolski Vitali V., candidate of technical science (PhD), docent, associated professor of the department of Building constructions
Brest
References
1. Graciano C., Ayestará, A. Steel plate girder webs under combined patch loading, bending and shear. Journal of Constructional Steel Research. 2013. Vol. 80. Pp. 202–212. doi:10.1016/j.jcsr.2012.09.018.
2. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. Pp. 327–343. doi:10.1016/j.jcsr.2014.06.018.
3. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders; part II: Longitudinally stiffened girders. Journal of Constructional Steel Research. 2014. Vol. 103. Pp. 344–353. doi:10.1016/j.jcsr.2014.06.017.
4. Kövesdi B., Kuhlmann U., Dunai L.Combined shear and patch loading of girders with corrugated webs. Periodica Polytechnica Civil Engineering. 2010. Vol. 54(2). Pp. 79–88.
5. Seitz M. Tragverhalten längsversteifter Blechträger unter quergerichteter Krafteinleitung (Longitudinally stiffened girder webs subjected to patch loading). Institute for Structural Design. Universität Stuttgart. 2005.
6. Kovacevic S., Markovic N., Sumarac D., Salatic R. Influence of patch load length on plate girders. Part II: Numerical research. Journal of Constructional Steel Research. 2019. Vol. 158. Pp. 213–229. doi:10.1016/j.jcsr.2019.03.025.
7. Rogač M., Aleksić S., Lučić D. Influence of patch load length on resistance of I-girders. Part-II: Numerical research. Journal of Constructional Steel Research. 2021. Vol. 176. Pp. 106–138. doi:10.1016/j.jcsr.2020.106369.
8. Pavlovčič L., Detzel A., Kuhlmann U., Beg D. Shear resistance of longitudinally stiffened panels. Part 1: Tests and numerical analysis of imperfections. Journal of Constructional Steel Research. 2007. Vol. 63(3). Pp. 337–350.
9. Nadolski V., Marková J., Podymako V., Sykora M. Pilot numerical analysis of resistance of steel beams under combined shear and patch loading. Proceedings of conference Modelling in Mechanics 2022, Technical University of Ostrava. 2021. Pp. 21–29.
10. Sinur F., Beg D. Moment–shear interaction of stiffened plate girders. Tests and numerical model verification. Journal of Constructional Steel Research. 2013. Vol. 85. Pp. 116–129. doi:10.1016/j.jcsr.2013.03.007.
11. Riahi F., Behravesh A., Fard M. Y., Armaghani A. Shear Buckling Analysis of Steel Flat and Corrugated Web I-girders. KSCE Journal of Civil Engineering. 2018. Vol. 22(12). Pp. 5058–5073.
12. Estrada I., Real E., Mirambell E. General behaviour and effect of rigid and non-rigid end post in stainless steel plate girders loaded in shear. Part II: Extended numerical study and design proposal. Journal of Constructional Steel Research. 2007. Vol. 63. Pp. 985–996. doi:10.1016/j.jcsr.2006.08.0.
13. Botyan S.S., ZHamojdik S.M., Kudryashov V.A., Olesiyuk N.M., Pischenkov I.A. Ocenka ogne-stojkosti stal'nyh stroitel'nyh konstrukcij s uchetom vliyaniya teploobmena s primykayushchimi smezh-nymi konstrukciyami [Assessment of fire resistance of steel building structures taking into account the influence of heat exchange with adjacent structures]. Vestnik Universiteta grazhdanskoj zashchity MCHS Belarusi. 2021. T. 5. No. 3. Pp. 278-288. doi:10.33408/2519-237X.2021.5-3.278.
14. Nadol'skij V.V. Raschet i konstruirovanie flancevogo soedineniya elementov pryamo-ugol'nogo secheniya, podverzhennyh central'nomu rastyazheniyu [Calculation and design of the flange connection of straight-angle cross-section elements subject to central tension]. Vestnik Polockogo gosudarstvennogo universiteta. 2018. No. 16. Pp. 121–130.
15. Saiyan S.G., Paushkin A.G. CHislennoe parametricheskoe issledovanie napryazhenno-deformirovannogo sostoyaniya dvutavrovyh balok s razlichnymi tipami gofrirovannyh stenok [Numerical parametric study of the stress-strain state of I-beams with various types of corrugated walls]. Vestnik MGSU. 2021. T. 16. No. 6. Pp. 676–687.
16. Martynov YU.S., Nadol'skij V.V., Verevka F.A. Stenovye paneli na osnove kassetnyh profilej. CHast' 1. Teoreticheskie issledovaniya [Wall panels based on cassette profiles. Part 1. Theoretical research. Construction and reconstruction]. Stroitel'stvo i rekonstrukciya. 2019. No.4 (84). Pp. 26–37.
17. Afenchenko D. S., Petrova YU. N., Ustinova M. E., Olejnikova R.E. Verifikaciya analitiche-skogo raschyota nesushchej sposobnosti perforirovannogo sterzhnya sredstvami konechno-elementnogo kompleksa [Verification of the analytical calculation of the bearing capacity of a perforated rod by means of a finite element complex]. Vestnik Kerchenskogo gosudarstvennogo morskogo tekhnologicheskogo universiteta. 2019. No. 4. Pp.118–129.
18. Nadol'skij V.V. Neopredelennosti raschetnyh modelej soprotivleniya stal'nyh kon-strukcij [Uncertainties of calculated models of resistance of steel structures]. Vestnik Polockogo gosudarstvennogo universiteta. 2016. No. 8. Pp. 66–72.
19. Sýkora M., Marková J., Nadolski V. Application of Semi-Probabilistic Methods to Verification of Series System. Transactions of the Technical University of Ostrava, Civil Engineering Series. 2021. Vol. 21/2. Pp. 80–85. doi:10.35181/tces-2021-0018.
20. Tur V.V., Nadol'skij V.V. Koncepciya proektirovaniya stroitel'nyh konstrukcij na osno-ve chislennyh modelej soprotivleniya [The concept of design of building structures based on numerical resistance models]. Stroitel'stvo i rekonstrukciya. 2022. No. 6 (104). Pp.78-90. doi:10.33979/2073-7416-2022-104-6-78-90.
21. Nadol'skij V.V. Analiz raschetnyh modelej soprotivleniya lokal'noj nagruzke stal'nyh elementov [Analysis of calculated models of resistance to local load of steel elements]. Vestnik BrGTU. 2016. No. 1(97). Pp. 167–171.
22. Nadol'skij V.V. Nadezhnost' stal'nogo elementa pri potere mestnoj ustojchivosti stenki[Reliability of a steel element with loss of local wall stability]. Vestnik MGSU. 2022. T. 17. Vyp. 5. Pp. 569–579. doi:10.22227/1997-0935.2022.5.569-579.
23. Braun B. Stability of steel plates under combined loading. Mitteilungen. Institut für Konstruktion und Entwurf der Universität Stuttgart. 2010. 226 p.
24. Gozzi J. Patch loading resistance of plated girders - ultimate and serviceability limit state : Doctoral Thesis. Sweden, Luleå University of Technology. 2007.
25. Hansen T. Theory of Plasticity for Steel Structures - Solutions for Fillet Welds, Plate Girders and Thin Plates. Department of Civil Engineering, Technical University of Denmark, Report. No. R-146. 2006. 239 p.
26. Flores R. Resistance of Transversally Stiffened Hybrid Steel Plate Girders to Concentrated Loads : Doctoral Thesis. Barcelona, Polytechnic University of Catalonia. 2009. 221 p.
27. Basler K., Yen B.T., Mueller J.A. Web buckling tests on welded plate girders, Part 3: Tests on plate girders subjected to shear. WRC Bulletin 64. No. 165 (60-5) P. 1689. 1960.
28. Lee S.C., Yoo C.H. Experimental Study on Ultimate Shear Strength of Web Panels. Journal of Structural Engineering. 1999. Vol. 125(8). Pp. 838–846. Doi: 10.1061/(ASCE)0733-9445(1999)125:8(838)
29. Roberts T.M. Combined Shear and Patch Loading of Plate Girders. J. Struct. Engrg, ASCE. 2000. Vol. 126. Pp. 316–321.
30. ТКП EN 1993-1 -5-2009 (02250). Еврокод 3. Проектирование стальных конструкций. Часть 1 -5. Пластинчатые элементы конструкций. Минск : МАиС, 2014. 51 с.
31. СНиП II-23-81* Стальные конструкции. Госстрой СССР. Москва : ЦИТП Госстроя СССР, 1991. 96 с.
32. ANSI/AISC-360-05. Specification for Structural Steel Buildings. Chicago, Illinois: American Institute of Steel Construction, 2005. 256 p.
33. CAN/CSA-S16-01. Limit States Design of Steel Structures, Includes Update No. 1 (2010), Update. No. 2 (2001). Mississauga, Ontario: Canadian Standards Association, 2009. 198 p.
34. Baryshnikov M.P., CHukin M.V., Bojko A.B. Analiz programmnyh kompleksov dlya rascheta napryazhenno-deformirovannogo sostoyaniya kompozicionnyh materialov v processah obrabotki davle-niem [Analysis of software systems for calculating the stress-strain state of composite materials in pressure treatment processes]. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. GI Nosova. 2012. No. 4. Pp.72–74.
35. Riks E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids Structures. 1979. No.15. Pp. 529–551.
36. Nadol'skij V. V., Vihlyaev A.I. Ocenka nesushchej sposobnosti balok s gofrirovannoj sten-koj metodom konechnyh elementov pri dejstvii lokal'noj nagruzki[Evaluation of the load-bearing capacity of beams with a corrugated wall by the finite element method under the action of a local load]. Vestnik MGSU. 2022. T. 17. Vyp. 6. Pp. 693–706. doi:10.22227/1997-0935.202.
37. Nadol'skij V.V., Podymako V.I. Ocenka nesushchej sposobnosti stal'noj balki metodom konechnyh elementov pri sovmestnom dejstvii lokal'nyh i sdvigovyh usilij[Evaluation of the bearing capacity of a steel beam by the finite element method under the combined action of local and shear forces]. Stroitel'stvo i rekonstrukciya. 2022. No. 2 (100). Pp. 26–43.
38. Tryland T. Steel girders subjected to concentrated loading – validation of numerical simulations. J. Constr. Steel Res. 1999. Vol. 50. Pp. 199–216.
39. BSK. Boverkets Handbok om Stålkonstruktioner, BSK 07, November 2007.
40. Yun X., Gardner L.Stress-strain curves for hot-rolled steels. J. Construct. Steel Res. 2017. Vol. 133. Pp. 36–46.
41. Estrada I. Shear design of stainless steel plate girders. Doctoral thesis. Barcelona (Spain). Department of Construction Engineering, Universitat Polit´ecnica de Catalunya; 2005.
42. Roberts T. M. Slender plate girders subjected to edge loading. Proc Inst Civ Eng. 1981. Vol. 2(71). P. 805-819.
43. D’apice M., Fielding D., Cooper P. Statics tests on longitudinally stiffened plate girders. Welding Research Council. (Bulletin No. 117). 1966.
44. Cooper P., Lew B., Yen B. Welded constructional alloy steel plate girder. Journal of the Structural DivisionASCE. 1964. Vol. 90(1). Pp. 1–36.
45. Nishino F., Okumura T. Experimental investigation of strength of plate girders in shear. Congress AIPC New York. 1968. Pp. 451–463.
46. Dubas P., Tschamper H. Stabilité des âmes soumises a une charge concentrée et a une flexion globale. Construction Metallique. 1990. Vol. 27(2). Pp. 25–39.
47. Roberts T. M., Shahabian F.Ultimate resistance of slender web panels to combined bending shear and patch loading. Journal of Constructional Steel Research. 2001. Vol. 57(7). Pp. 779-790.
48. COMBRI. Competitive Steel and Composite Bridges by Improved Steel Plated Structures. Final Report, RFCS research project RFS-CR-03018, 2007.
49. Glassman D. A compression model for ultimate postbuckling shear strength. Thin-Walled Structures. 2016. Vol. 102. Pp. 258-272. doi:10.1016/j.tws.2016.01.016.
50. Bergfelt A., Hovik J.Thin-walled deep plate girders under static loads. Proceedings of the IABSE Colloquium, NewYork. 1968. Vol. 8. Pp. 465–478.
51. Kamtekar A.G. Tests on Hybrid Plate Girders. Report No.CUED/C-Struct/TR28, CambridgeUniversity, Cambridge, 1972.
52. Rockey K.C. The ultimate load behaviour of plate girders loaded in shear. Structural Engineers. 1972. Vol. 50(1). Pp. 29–48.
53. Evans H.R., Rockey K.C., Porter D.M. Tests on longitudinally reinforced plate girders subjected to shear. Proceedings of Conference on Structural Stability, Liege. 1977.
54. Narayanan R., Rockey K. C. Ultimate load capacity of plate girders with webs containing circular cut-outs. Proceedings of the Institution of Civil Engineers. 1981. Vol. 71. Pp. 845–862.
55. Sakai F. Failure tests of plate girders using large-sided models. University of Tokyo, Department of Civil Engineering, Structural Engineering Report, Tokyo. 1966.
56. Moon J. Shear strength and design of trapezoidally corrugated steel webs. Journal of Constructional Steel Research. 2009. Vol. 65(5). Pp. 1198-1205.
57. Driver R. G., Abbas H. H., Sause R. Shear behavior of corrugated web bridge girders. J. Struct. Eng. ASCE. 2006. Vol. 132(2). Pp. 195-203. doi:10.1061/ (ASCE) 0733-9445(2006)132:2(195).
Review
For citations:
Nadolski V.V. Statistical characteristics of the numerical model uncertainties for steel elements. Building and Reconstruction. 2023;(3):17-34. (In Russ.) https://doi.org/10.33979/2073-7416-2023-107-3-17-34