Preview

Строительство и реконструкция

Расширенный поиск

ЭКСПЕРИМЕНТАЛЬНЫЕ И ТЕОРЕТИЧЕСККИЕ ИССЛЕДОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ ПЛОСКИХ ПЕРЕКРЫТИЙ ПРИ УДАЛЕНИИ ЦЕНТРАЛЬНОЙ ОПОРЫ

https://doi.org/10.33979/2073-7416-2023-105-1-77-103

Аннотация

В работе экспериментально и теоретически рассмотрены вопросы оценки живучести железобетонных конструктивных систем с плоскими дисками перекрытий в особой расчетной ситуации.

Представлена методика проведения экспериментальных исследований для двух масштабных моделей фрагмента плоского перекрытия в случае удаления центральной опоры при статическом (образец FS-1) и динамическом (образец FS-2) нагружениях. На основании полученных данны выполнен анализ основгых механизмов сопротивления плоских дисков перекрытия прогрессирующему обрушению.

В статье представлен теоретический подход прямой количественной оценки живучести, который основан на положениях энергетического баланса поврежденной конструктивной системы в особой расчетной ситуации. Предложенные рещения позволяют определить нелинейную квазистатическую реакцию «нагрузка-перемещение» и величину предельного динамического сопротивления для железобетонных конструктивных систем с плоскими дисками перекрытий в случае удаления вертикального ключевого элемента.

Об авторах

Виктор Владимирович Тур
УО «Брестский государственный технический университет»
Россия

Брест



Андрей Викторович Тур
УО «Брестский государственный технический университет»
Россия

Брест



Александр Александрович Лизогуб
УО «Брестский государственный технический университет»
Россия

Брест



Список литературы

1. Chen Z., Zhu Y., Lu X., Lin K. A simplified method for quantifying the progressive collapse fragility of multi-story RC frames in China. Engineering Failure Analysis. 2023. Vol. 143. doi:10.1016/j.engfailanal.2022.106924

2. Ellingwood B R., Smilowitz R., Dusenberry D.O., Duthinh D., Lew H.S., Carino N.J. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. National Institute of Science and Technology, US Deparment of Commerce. 2007. 194 p.

3. Herraiz B., Vogel T., Russell J. Energy-based method for sudden column failure scenarios: theoretical, numerical and experimental analysis. In IABSE Workshop Helsinki 2015: Safety, Robustness and Condition Assessment of Structures. Report. International Association for Bridge and Structural Engineering IABSE. 2015. Pp. 70-77. doi:https://doi.org/10.3929/ethz-a-010389549

4. Izzuddin B.A., Vlassis A.G., Elghazouli A.Y., Nethercot D.A. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering structures. 2008. Vol. 30. No. 5. Pp. 1308-1318. doi:10.1016/j.engstruct.2007.07.011

5. Qian K., Li B. Research advances in design of structures to resist progressive collapse. Journal of Performance of Constructed Facilities. 2015. Vol. 29. No. 5. B4014007. doi:10.1061/(ASCE)CF.1943-5509.0000698

6. Fedorova N.V., Savin S.Y. Progressive collapse resistance of facilities experienced to localized structural damage-an analytical review. Building and Reconstruction. 2021. Vol. 95. No. 3. Pp. 76-108. doi:10.33979/2073-7416- 2021-95-3-76-108

7. Tur V., Tur A., Lizahub A. Simplified analytical method for the robustness assessment of precast reinforced concrete structural systems. Budownictwo i Architektura. 2021. Vol. 20. No. 4. Pp. 93-114. doi:10.35784/bud-arch.2774

8. ASCE. Minimum design loads for buildings and other structures. American Society of Civil Engineers. 2005.

9. British Standard BS 8110-11. The structural use of concrete in building – Part 1: Code of practice for design and construction. London, U.K. 1997.

10. DoD UFC Guidelines. Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria (UFC) 4-023-03. Department of Defense (DoD). 2005.

11. European Committee for Standardization. Eurocode 1 - EN 1991-1-7: Actions on structures - Part 1-7: General actions - Accidental actions. 2006.

12. General Service Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC). 2003.

13. SN 2.01.01-2022. Osnovy proektirovaniya stroitel'nyh konstrukcij [Basics of design of building structures]. Minsk. 2022. (In Russian)

14. SP 5.03.01-2020. Betonnye i zhelezobetonnye konstrukcii [Concrete and reinforced concrete structures]. Minsk. 2020. (In Russian)

15. Androsova N.B., Vetrova O.A. Analiz issledovanij i trebovanij po zashchite zdanij i sooruzhenij ot progressiruyushchego obrusheniya v zakonadatel'no-normativnyh dokumentah Rossii i stranah Evrosoyuza [The analysis of studies and requirements for the protection of buildings and structures against progressive collapse in regulatory documents of Russia and the European union]. Stroitel'stvo i rekonstruktsiya. 2019. Vol. 1. Pp. 85-96. (In Russian). https://doi.org/10.33979/2073-7416-2019-81-1-85-96

16. Adam J.M., Parisi F., Sagaseta J., Lu, X. Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures. 2018. Vol. 173. Pp. 122-149. doi:10.1016/j.engstruct.2018.06.082

17. Tohidi M. Effect of floor-to-floor joint design on the robustness of precast concrete cross wall buildings (Doctoral dissertation, University of Birmingham). 2015.

18. Dat PX., Tan K.H. Experimental study of beam–slab substructures subjected to a penultimate-internal column loss. Engineering Structures. 2013. Vol. 55. Pp: 2-15. doi:10.1016/j.engstruct.2013.03.026

19. Dat P.X., Tan K.H. Experimental response of beam-slab substructures subject to penultimate-external column removal. Journal of Structural Engineering. 2015. Vol. 141. No. 7. Pp. 1-12. doi:10.1061/(ASCE)ST.1943- 541X.0001123

20. Lim N.S., Tan K.H., Lee C.K. Experimental studies of 3D RC substructures under exterior and corner column removal scenarios. Engineering Structures. 2017. Vol. 150. Pp. 409-427. doi:10.1016/j.engstruct.2017.07.041

21. Pham A.T., Lim N.S., Tan K.H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures. 2017. Vol. 150. Pp. 520-536. doi:10.1016/j.engstruct.2017.07.060

22. Ren P., Li Y., Lu X., Guan H., Zhou Y. Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures. 2016. Vol. 118. Pp. 28-40. doi:10.1016/j.engstruct.2016.03.051

23. Wieczorek M. Influence of amount and arrangement of reinforcement on the mechanism of destruction of the corner part of a slab-column structure. Procedia Engineering. 2013. Vol. 57. Pp. 1260-1268. doi:10.1016/j.proeng.2013.04.159

24. Kolchunov V.I., Osovskikh Ye.V., Al'kadi S.A. Eksperimental'nyye issledovaniya fragmenta karkasa mnogoetazhnogo zdaniya s zhelezobetonnymi elementami sostavnogo secheniya [Experimental studies of a fragment of a high-rise building frame with reinforced concrete elements of a composite section]. Stroitel'stvo i rekonstruktsiya. 2016. No. 6. Pp. 13-21. (In Russian)

25. Ma F., Gilbert B.P., Guan H., Xue H., Lu X., Li Y. Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures. 2019. Vol. 180. Pp. 728-741. doi:10.1016/j.engstruct.2018.11.043

26. Pang B., Wang F., Yang J., Nyunn S., Azim I. Performance of slabs in reinforced concrete structures to resist progressive collapse. In Structures. Elsevier. 2021. Vol. 33. Pp. 4843-4856. doi:10.1016/j.istruc.2021.04.092

27. Qian K., Li B. Slab effects on response of reinforced concrete substructures after loss of corner column. ACI Structural Journal. 2012. Vol. 109. No. 6. Pp. 845-855.

28. Qian K., Li B., Ma J.X. Load-carrying mechanism to resist progressive collapse of RC buildings. J. Struct. Eng, 2015. Vol. 141. No. 2. Pp. 1-14. doi:10.1061/(ASCE)ST.1943-541X.0001046

29. Russell J.M., Owen J.S., Hajirasouliha I. Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures. 2015. Vol. 99. Pp. 28-41. doi:10.1016/j.engstruct.2015.04.040

30. Yi W.J., Zhang F.Z., Kunnath S.K. Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering. 2014. Vol. 140. No. 9. Pp. 1-10. doi:10.1061/(ASCE)ST.1943-541X.0000963

31. International Standard Organization. ISO 2394: General principles on reliability for structures, Fourth ed. Genève, Switzerland. 2015.

32. Preece B.W., Davis D.D. Modelirovanie zhelezobetonnyh konstrukcij [Modeling of reinforced concrete structures]. Minsk: The highest school. 1974. 224 p. (In Russian)

33. GOST 10180-2012. Metody opredeleniya prochnosti po kontrol'nym obrazcam [Concretes. Methods for strength determination using reference specimens]. Minsk. 2015. (In Russian)

34. GOST 24452-80. Metody opredeleniya prizmennoj prochnosti, modulya uprugosti i koefficienta Puassona [Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson’s ratio determination]. (In Russian)

35. GOST 12004-81. Stal' armaturnaya. Metody ispytaniya na rastyazhenie [Reinforcing-bar steel. Tensile test methods]. 2011. (In Russian)

36. fib Bulletin 43: Structural connections for precast concrete buildings. Guide to good practice. 2008.

37. fib Bulletin 72. Bond and anchorage of embedded reinforcement: Background to the fib Model Code for Concrete Structures 2010: Technical report. fib-Fédération internationale du béton. 2014.

38. Timoshenko S., Woinowsky-Krieger S. Theory of Plates and Shells, 2nd ed. New York City, United States of America: McGraw-Hill. 1987. 580 p.

39. Kennedy G., Goodchild C.H. Practical yield line design. Concrete Centre, Surrey, UK., 2004. 171 p.

40. fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), Lausanne, Switzerland. 2010.

41. Micallef K., Sagaseta J., Ruiz M.F., Muttoni A. Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading. International Journal of Impact Engineering. 2014. Vol. 71. Pp. 17-33. doi:10.1016/j.ijimpeng.2014.04.003

42. Muttoni A. Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI structural Journal. 2008. Vol. 105. Pp. 440-450. doi:10.14359/19858


Рецензия

Для цитирования:


Тур В.В., Тур А.В., Лизогуб А.А. ЭКСПЕРИМЕНТАЛЬНЫЕ И ТЕОРЕТИЧЕСККИЕ ИССЛЕДОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ ПЛОСКИХ ПЕРЕКРЫТИЙ ПРИ УДАЛЕНИИ ЦЕНТРАЛЬНОЙ ОПОРЫ. Строительство и реконструкция. 2023;1(1):77-103. https://doi.org/10.33979/2073-7416-2023-105-1-77-103

For citation:


Tur V.V., Tur A.V., Lizahub A.A. EXPERIMENTAL AND THEORETICAL STUDY OF THE REINFORCED CONCRETE FLAT SLABS WITH THE CENTRAL SUPPORT LOSS. Building and Reconstruction. 2023;1(1):77-103. https://doi.org/10.33979/2073-7416-2023-105-1-77-103

Просмотров: 197


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)