Preview

Building and Reconstruction

Advanced search

EXPERIMENTAL AND THEORETICAL STUDY OF THE REINFORCED CONCRETE FLAT SLABS WITH THE CENTRAL SUPPORT LOSS

https://doi.org/10.33979/2073-7416-2023-105-1-77-103

Abstract

The paper experimentally and theoretically considers the issues of assessing the robustness of reinforced concrete structural systems with flat slabs in an accidental design situation.

The methodolody of experimental studies for two scale models of a flat slab fragment in the case of removal of the central support under static (sample FS-1) and dynamic (sample FS-2) loading are presented. Based on the data obtained, the analysis of the main mechanisms of resistance of flat slabs to progressive collapse was carried out.

The article presents a theoretical approach to a direct quantitative assessment of robustness, which is based on the provisions of the energy balance of a damaged structural system in an accidental design situation. The proposed solutions make it possible to determine the non-linear quasi-static "loaddisplacement" reaction and the ultimate dynamic resistance for reinforced concrete structural systems with flat slabs in the case of removal of the vertical key element.

About the Authors

Viktar V. Tur
Brest State Technical University
Russian Federation

Brest



Andrei V. Tur
Brest State Technical University
Russian Federation

Brest



Aliaksandr Al. Lizahub
Brest State Technical University
Russian Federation

Brest



References

1. Chen Z., Zhu Y., Lu X., Lin K. A simplified method for quantifying the progressive collapse fragility of multi-story RC frames in China // Engineering Failure Analysis. 2023. № 143. doi:10.1016/j.engfailanal.2022.106924

2. Ellingwood B R., Smilowitz R., Dusenberry D.O., Duthinh D., Lew H.S., Carino N.J. Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. National Institute of Science and Technology, US Deparment of Commerce. 2007. 194 с.

3. Herraiz B., Vogel T., Russell J. Energy-based method for sudden column failure scenarios: theoretical, numerical and experimental analysis. In IABSE Workshop Helsinki 2015: Safety, Robustness and Condition Assessment of Structures. Report. International Association for Bridge and Structural Engineering IABSE. 2015. С. 70- 77. doi: https://doi.org/10.3929/ethz-a-010389549

4. Izzuddin B.A., Vlassis A.G., Elghazouli A.Y., Nethercot D.A. Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework // Engineering structures. 2008. №30 (5). С. 1308-1318. doi:10.1016/j.engstruct.2007.07.011

5. Qian K., Li B. Research advances in design of structures to resist progressive collapse // Journal of Performance of Constructed Facilities. 2015. №2 9 (5). B4014007. doi:10.1061/(ASCE)CF.1943-5509.0000698

6. Федорова Н.В., Савин С.Ю. Анализ особенностей сопротивления прогрессирующему обрушению конструктивных систем зданий и сооружений при внезапных структурных перестройках: аналитический обзор научных исследований // Строительство и реконструкция. 2021. № 3. C. 76-108. https://doi.org/10.33979/2073- 7416-2021-95-3-76-108

7. Tur V., Tur A., Lizahub A. Simplified analytical method for the robustness assessment of precast reinforced concrete structural systems // Budownictwo i Architektura. 2021. № 20 (4). С. 93-114. doi:10.35784/budarch.2774

8. ASCE. Minimum design loads for buildings and other structures. American Society of Civil Engineers. 2005.

9. British Standard BS 8110-11. The structural use of concrete in building – Part 1: Code of practice for design and construction. London, U.K. 1997.

10. DoD UFC Guidelines. Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria (UFC) 4-023-03. Department of Defense (DoD). 2005.

11. European Committee for Standardization. Eurocode 1 - EN 1991-1-7: Actions on structures - Part 1-7: General actions - Accidental actions. 2006.

12. General Service Administration (GSA). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC). 2003. 13. СН 2.01.01-2022. Основы проектирования строительных конструкций. Минск. 2022.

13. СП 5.03.01-2020. Бетонные и железобетонные конструкции. Минск. 2020.

14. Андросова Н.Б., Ветрова О.А. Анализ исследований и требований по защите зданий и сооружений от прогрессирующего обрушения в законадательно-нормативных документах России и странах Евросоюза // Строительство и реконструкция. 2019. № 1. C. 85-96. https://doi.org/10.33979/2073-7416-2019-81-1-85-96

15. Adam J.M., Parisi F., Sagaseta J., Lu, X. Research and practice on progressive collapse and robustness of building structures in the 21st century // Engineering Structures. 2018. № 173. С. 122-149. doi:10.1016/j.engstruct.2018.06.082

16. Tohidi M. Effect of floor-to-floor joint design on the robustness of precast concrete cross wall buildings (Doctoral dissertation, University of Birmingham). 2015.

17. Dat PX., Tan K.H. Experimental study of beam–slab substructures subjected to a penultimate-internal column loss // Engineering Structures. 2013. № 55. С. 2-15. doi:10.1016/j.engstruct.2013.03.026

18. Dat P.X., Tan K.H. Experimental response of beam-slab substructures subject to penultimate-external column removal // Journal of Structural Engineering. 2015. №141 (7). С. 1-12. doi:10.1061/(ASCE)ST.1943- 541X.0001123

19. Lim N.S., Tan K.H., Lee C.K. Experimental studies of 3D RC substructures under exterior and corner column removal scenarios // Engineering Structures. 2017. № 150. С. 409-427. doi:10.1016/j.engstruct.2017.07.041

20. Pham A.T., Lim N.S., Tan K.H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions // Engineering Structures. 2017. № 150. С. 520-536. doi:10.1016/j.engstruct.2017.07.060

21. Ren P., Li Y., Lu X., Guan H., Zhou Y. Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario // Engineering Structures. 2016. № 118. С. 28-40. doi:10.1016/j.engstruct.2016.03.051

22. Wieczorek M. Influence of amount and arrangement of reinforcement on the mechanism of destruction of the corner part of a slab-column structure // Procedia Engineering. 2013. № 57. С. 1260-1268. doi:10.1016/j.proeng.2013.04.159

23. Колчунов В.И., Осовских Е.В., Алькади С.А. Экспериментальные исследования фрагмента каркаса многоэтажного здания с железобетонными элементами составного сечения // Строительство и реконструкция. 2016. № 6. С. 13-21.

24. Ma F., Gilbert B.P., Guan H., Xue H., Lu X., Li Y. Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios // Engineering Structures. 2019. №180. С. 728-741. doi:10.1016/j.engstruct.2018.11.043

25. Pang B., Wang F., Yang J., Nyunn S., Azim I. Performance of slabs in reinforced concrete structures to resist progressive collapse. In Structures. Elsevier. 2021. № 33. С. 4843-4856. doi:10.1016/j.istruc.2021.04.092

26. Qian K., Li B. Slab effects on response of reinforced concrete substructures after loss of corner column // ACI Structural Journal. 2012. №109 (6). С. 845-855.

27. Qian K., Li B., Ma J.X. Load-carrying mechanism to resist progressive collapse of RC buildings // J. Struct. Eng, 2015. №141 (2) С. 1-14. doi:10.1061/(ASCE)ST.1943-541X.0001046

28. Russell J.M., Owen J.S., Hajirasouliha I. Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss // Engineering Structures. 2015. № 99. С. 28-41. doi:10.1016/j.engstruct.2015.04.040

29. Yi W.J., Zhang F.Z., Kunnath S.K. Progressive collapse performance of RC flat plate frame structures // Journal of Structural Engineering. 2014. № 140 (9). С. 1-10. doi:10.1061/(ASCE)ST.1943-541X.0000963

30. International Standard Organization. ISO 2394: General principles on reliability for structures, Fourth ed. Genève, Switzerland. 2015.

31. Прис Б.В., Дэвис Д.Д. Моделирование железобетонных конструкций. Минск: «Вышэйш. школа». 1974. 224 с.

32. ГОСТ 10180-2012. Бетоны. Методы определения прочности по контрольным образцам. Минск. 2015.

33. ГОСТ 24452-80. Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона.

34. ГОСТ 12004-81. Сталь арматурная. Методы испытания на растяжение [Reinforcing-bar steel. Tensile test methods]. 2011.

35. fib Bulletin 43: Structural connections for precast concrete buildings. Guide to good practice. 2008.

36. fib Bulletin 72. Bond and anchorage of embedded reinforcement: Background to the fib Model Code for Concrete Structures 2010: Technical report. fib-Fédération internationale du béton. 2014.

37. Timoshenko S., Woinowsky-Krieger S. Theory of Plates and Shells, 2nd ed. New York City, United States of America: McGraw-Hill. 1987. 580 с.

38. Kennedy G., Goodchild C.H. Practical yield line design. Concrete Centre, Surrey, UK., 2004. 171 p.

39. fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete (fib), Lausanne, Switzerland. 2010.

40. Micallef K., Sagaseta J., Ruiz M.F., Muttoni A. Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading // International Journal of Impact Engineering. 2014. № 71. С. 17-33. doi:10.1016/j.ijimpeng.2014.04.003

41. Muttoni A. Punching shear strength of reinforced concrete slabs without transverse reinforcement // ACI structural Journal. 2008. № 105 С. 440-450. doi:10.14359/19858


Review

For citations:


Tur V.V., Tur A.V., Lizahub A.A. EXPERIMENTAL AND THEORETICAL STUDY OF THE REINFORCED CONCRETE FLAT SLABS WITH THE CENTRAL SUPPORT LOSS. Building and Reconstruction. 2023;1(1):77-103. https://doi.org/10.33979/2073-7416-2023-105-1-77-103

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)