Preview

Building and Reconstruction

Advanced search

PARAMETERS OF NUMERICAL RESISTANCE MODELS FOR STEEL ELEMENTS

https://doi.org/10.33979/2073-7416-2023-105-1-43-56

Abstract

The use of numerical models to analyze the behavior of steel elements has undeniable advantages and opens up a number of promising areas for the study of complex or new design solutions. The development of computer technology and software gives this direction a new stage of development - the use of numerical models in everyday design. For wider use of numerical models and ensuring comparability of results, it is important to develop universal principles for constructing numerical models with subsequent regulation in normative documents. Within the framework of this study, emphasis is placed on the use of numerical models on a par with classical (formula) models, and first of all, for this purpose, a review and systematization of the most important parameters of numerical models of load-bearing capacity is carried out. The instructions on the purpose of the properties of materials, the type of the final element, the quality of the mesh, the size and shape of imperfections applied to steel structures are presented. The results obtained are of interest for further research on the unification of the requirements for the parameters of numerical models and their verification based on experimental data with the calculation of statistical characteristics of the uncertainty of the numerical model.

About the Author

Vitali V. Nadolski
Brest State Technical University; Belarusian National Technical University
Belarus

Minsk



References

1. Graciano C., Ayestarán A. Steel plate girder webs under combined patch loading, bending and shear // Journal of Constructional Steel Research. 2013. Vol. 80. Pр. 202–212. doi:10.1016/j.jcsr.2012.09.018.

2. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders Part I: Longitudinally unstiffened girders // Journal of Constructional Steel Research. 2014. Vol. 103. Pp. 327–343. doi:10.1016/j.jcsr.2014.06.018.

3. Kövesdi B., Alcaine J., Dunai L., Braun B. Interaction behaviour of steel I-girders; part II: Longitudinally stiffened girders // Journal of Constructional Steel Research. 2014. Vol. 103. Pp. 344–353. doi:10.1016/j.jcsr.2014.06.017.

4. Kövesdi B., Kuhlmann U., Dunai L. Combined shear and patch loading of girders with corrugated webs // Periodica Polytechnica Civil Engineering. 2010. Vol. 54. Pр. 79–88.

5. Nadolski V., Marková J., Podymako V., Sykora M. Pilot numerical analysis of resistance of steel beams under combined shear and patch loading // Proceedings of conference Modelling in Mechanics 2022, Ostrava, 26-27 May 2022. Ostrava: VSB - Technical University of Ostrava, Faculty of Civil Engineering. 2021. Pр. 12-19.

6. Seitz M. Longitudinally stiffened girder webs subjected to patch loading. Institute for Structural Design. Universität Stuttgart. 2005. 250 p.

7. Kovacevic S., Markovic N., Sumarac D., Salatic R. Influence of patch load length on plate girders. Part II: Numerical research // Journal of Constructional Steel Research. 2019. Vol. 158. Pр. 213–229. doi:10.1016/j.jcsr.2019.03.025.

8. Pavlovčič L., Detzel A., Kuhlmann U., Beg D. Shear resistance of longitudinally stiffened panels. Part 1: Tests and numerical analysis of imperfections // Journal of Constructional Steel Research. 2007. Vol. 63(3). Pр. 337- 350.

9. Sinur F., Beg D. Moment–shear interaction of stiffened plate girders—Tests and numerical model verification // Journal of Constructional Steel Research. 2013. Vol. 85. Pp. 116–129. doi:10.1016/j.jcsr.2013.03.007.

10. Estrada I., Real E., Mirambell E. General behaviour and effect of rigid and non-rigid end post in stainless steel plate girders loaded in shear. Part II: Extended numerical study and design proposal // Journal of Constructional Steel Research. 2007. Vol. 63. Pp. 985–996. doi:10.1016/j.jcsr.2006.08.0.

11. Botyan S.S., ZHamojdik S.M., Kudryashov V.A., Olesiyuk N.M., Pischenkov I.A. Ocenka ognestojkosti stal'nyh stroitel'nyh konstrukcij s uchetom vliyaniya teploobmena s primykayushchimi smezhnymi konstrukciyami. [Assessment of fire resistance of steel building structures taking into account the influence of heat exchange with adjacent adjacent structures.] // Vestnik Universiteta grazhdanskoj zashchity MCHS Belarusi. 2021. Vol. 3. Pp. 278- 288. doi:10.33408/2519-237X.2021.5-3.278.

12. Nadol'skij V.V. Raschet i konstruirovanie flancevogo soedineniya elementov pryamo-ugol'nogo secheniya, podverzhennyh central'nomu rastyazheniyu [Calculation and design of the flange connection of rectangular cross-section elements subject to central tension] // Vestnik Polockogo gosudarstvennogo universiteta [Bulletin of Polotsk State University]. 2018. No. 16. Рр. 121–130.

13. Perel'muter A.V., Slivker. V.I. Raschetnye modeli sooruzhenij i vozmozhnost'yu ih analiza [Design models of structures and the possibility of their analysis]. Moscow. SCUD SOFT, 2011. 732 p.

14. Ljungström N., Karlberg O. Girders with Trapezoidally Corrugated Webs under Patch. Thesis 2010:146. Sweden, Göteborg, 2010. 185 p.

15. Nadol'skij V.V., Podymako V.I. Ocenka nesushchej sposobnosti stal'noj balki metodom konechnyh elementov pri sovmestnom dejstvii lokal'nyh i sdvigovyh usilij[Evaluation of the bearing capacity of a steel beam by the finite element method under the combined action of local and shear forces]. Stroitel'stvo i rekonstrukciya. 2022. No. 2 (100). Pp. 26-43.

16. Nadol'skij V.V., Vihlyaev A.I. Ocenka nesushchej sposobnosti balok s gofrirovannoj sten-koj metodom konechnyh elementov pri dejstvii lokal'noj nagruzki [Evaluation of the load-bearing capacity of beams with a corrugated wall by the finite element method under the action of a local load] // Vestnik MGSU. 2022. T. 17. Vyp. 6. Pp. 693–706. doi:10.22227/1997-0935.202.

17. BSK. Boverkets Handbok om Stålkonstruktioner, BSK 07, November 2007.

18. Yun X., Gardner L. Stress-strain curves for hot-rolled steels // Journal of Constructional Steel Research. 2017. Vol. 133. Pp. 36–46.

19. SP 16.13330.2017 «Stal'nye konstrukcii. Aktualizirovannaya redakciya SNiP II-23-81*» (s Popravkami, s Izmeneniyami N 1, 2). [Steel structures. Updated version of SNiP II-23-81* " (as Amended, with Amendments N 1, 2)}]. Moskva: Standartinform, 2017.

20. Buhan'ko A.A. Uslovie plastichnosti, svyazannoe s liniyami urovnya poverhnosti deforma-cionnyh sostoyanij, dlya razlichnyh processov deformirovaniya [The plasticity condition associated with the lines of the surface level of the deformation states for various deformation processes]. Vestnik SamGU. 2013. No. 9/2(110). Pp. 43-53.

21. Brautman L., Krok R. Kompozicionnye materialy. Tom 2: Mekhanika kompozicionnyh ma-terialov [Composite materials. Volume 2: Mechanics of composite materials.]. Moskva : Mir, 1978. 438 p.

22. Soboyejo W.O. Mechanical properties of engineered materials. New York : Marcel Dekker, 2003. 146 p.

23. Wyrzykowski J.W., Pleszakow E., Sieniawski J. Odkształcanie i pękanie metali. Warszawa: Wydawnictwa Naukowo-Techniczne, 1999. 406 p.

24. Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York : McGraw-Hill, 1959. 580 p.

25. Love A. E. H. On the small free vibrations and deformations of elastic shells. Philosophical trans. of the Royal Society (London), 1888. Vol. 17. Pp. 491-549. doi:10.1098/rsta.1888.0016.

26. Ambarcumyan S.A. Teoriya anizotropnyh plastin: Prochnost', ustojchivost' i kolebaniya. [Theory of anisotropic plates: Strength, stability and vibrations.] 2- e izd., dop. Moskva : Nauka, 1987. 360 p.

27. Reissner E. On the theory of bending of elastic plates. Journal of Mathematical Physics. 1944. Vol. 23. Pp. 184-191.

28. Perushev E.G. Razvitie i primenenie MKE dlya resheniya geometricheski nelinejnyh zadach [Development and application of FEM for solving geometrically nonlinear problem]. Dis. kand. tekhn. nauk : Moskva, 1984. 215 p.

29. Crisfield M. An arc-length method including line searches and accelerations // Computer methods in Applied Mechanics and Engineering. 1983. Vol. 19. Pp. 1269-1289.

30. Riks E. An incremental approach to the solution of snapping and buckling problems // International Journal of Solids Structures. 1979. No. 15. Pp. 529-551.

31. Walz J.E. Accuracy and convergence of finite element approximations. National Aeronautics And Space Administration Hampton Va Langley Research Center. 1968. Pp. 995-1027.

32. Pin T. The convergence of finite element method in solving linear elastic problems // International Journal of Solids and Structures. 1967. Vol. 5. Pp. 865-879.

33. Drabek P., Milota J. Methods of Nonlinear Analysis: Applications to Differential Equations. Springer Science & Business Media. 2007. 568 p.

34. Baum C.E. Energy Norms and 2-Norms // Environmental and Space Electromagnetics. Springer, Tokyo. 1991. doi:10.1007/978-4-431-68162-5_49.

35. Tur А., Tur V., Lizahub A. An innovative approach to safety of non-linear analysis applied to structural robustness as-sessment // Civil and Environmental Engineering. 2018. No. 9. P. 137–141.

36. Siemens. Basic Nonlinear Analysis User’s Guide. Siemens Product Lifecycle Management Software Inc. https://docs.plm.automation.siemens.com/data_services/resources/ nxnastran/10/ help/en_US/tdocExt/ pdf/bas_nonlinear.pdf (Date of access : 08.01.2022).

37. Chacon R., Mirambell E., Real E. Influence of designer-assumed initial conditions on the numerical modelling of steel plate girders subjected to patch loading // Thin-Walled Structures. 2009. Vol. 47. P. 391–402.

38. Chacon R., Serrat M., Real E. The influence of structural imperfections on the resistance of plate girders to patch loading // Thin-Walled Structures. 2012. Vol. 53. Pp. 15–25. doi:10.1016/j.tws.2011.12.003.

39. Flores R. Resistance of Transversally Stiffened Hybrid Steel Plate Girders to Concentrated Loads. Doctoral Thesis .Barcelona, Polytechnic University of Catalonia, 2009. 221 p.

40. Gozzi J. Patch loading resistance of plated girders - ultimate and serviceability limit state: Doctoral Thesis. Sweden, Luleå University of Technology, 2007. 189 p.

41. Ruff D.C. Der Einfluss von Imperfektionen auf das Tragverhalten von Platten. Stahlbau. 1999. Vol. 68. Pp. 829–834.

42. Ruff D.C., Schulz U. Ergänzende Stellungnahme zum Einfluss von Imperfektionen auf das Tragverhalten von Platten // Stahlbau. 2000. Vol. 69(6). Pp. 503 - 527.

43. Rusch A., Lindner J. Tragfähigkeit von beulgefährdeten Querschnittselementen unter Berücksichtigung von Imperfektionen // Stahlbau. 2001. Vol. 70(10). Pp. 765–774.

44. Schmidt H. Stability of steel shell structures: General report // Journal of Constructional Steel Research. 2000. Vol. 55(1-3). Pp. 159-181.

45. Nadol'skij V.V. Neopredelennosti raschetnyh modelej soprotivleniya stal'nyh kon-strukcij [Uncertainties of calculated models of resistance of steel structures] // Vestnik Polockogo gosudarstvennogo universiteta [Bulletin of Polotsk State University]. 2016. No. 8. Pp. 66–72.

46. Kuzhava Z. Statisticheskaya ocenka sluchajnyh nepravil'nostej real'nyh central'no – szhatyh stal'nyh sterzhnej [Statistical evaluation of random irregularities of real centrally compressed steel rods.] // Stroitel'naya mekhanika i raschet sooruzhenij [Construction mechanics and calculation of structures]. 1982. No.5. Pp. 61-62.

47. Bjorhovde R. Columns: From Theory to Practice // AISC Engineering Journal. 1988. Vol. 25. Pp. 21–34.

48. Fukumoto Y. Evaluation of multiple column curves using the experimental data-base approach // Journal of Constructional Steel Research. 1983. Vol. 3. Pp. 2-19.


Review

For citations:


Nadolski V.V. PARAMETERS OF NUMERICAL RESISTANCE MODELS FOR STEEL ELEMENTS. Building and Reconstruction. 2023;1(1):43-56. (In Russ.) https://doi.org/10.33979/2073-7416-2023-105-1-43-56

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)