Preview

Building and Reconstruction

Advanced search

STRENGTH OF MONOLITHIC REINFORCED CONCRETE SLABS FOR PUNCHING UNDER STATIC AND DYNAMIC LOADING

https://doi.org/10.33979/2073-7416-2022-103-5-67-79

Abstract

Modern design standards of developed countries have significant differences in the design provisions for determining the bearing capacity of monolithic reinforced concrete slabs for punching and do not fully take into account the features of design solutions and operating conditions. The available design positions are designed for the static loading mode of structures. The stress-strain state of plates for punching under dynamic load is currently little studied, and as a result, there are no methods for determining the bearing capacity of plates for punching under dynamic loading. The article presents the results of experimental and theoretical studies of the bearing capacity of plates under static and dynamic loads. The methodology of experimental studies and the design of prototypes, equipment for conducting power tests are described, the results of studies on the penetration of fragments of the interface of flat reinforced concrete monolithic slabs with a column under dynamic and static loading are presented. A comparison of the destructive load for samples tested under dynamic loading with the destructive load for samples tested under static load is presented. The factors affecting the strength of the plates during punching under dynamic loading are determined. Proposals have been developed to improve the methodology for calculating the strength of flat reinforced concrete slabs when pushing through static and dynamic loads.

About the Authors

Nikolai N. Trekin
National Research Moscow State University of Civil Engineering
Russian Federation


Dmitry Yu. Sarkisov
Tomsk State University of Architecture and Building
Russian Federation


Vladimir V. Krylov
National Research Moscow State University of Civil Engineering
Russian Federation


Elizaveta B. Yvstafieva
LLC «Scientific Design Bureau «Constructive Solutions»
Russian Federation


Konstantin R. Andrian
JSC «Central Research and Design and Experimental Institute of Industrial Buildings and Structures - TsNIIPromzdaniy»
Russian Federation


References

1. Однокопылов Г.И., Саркисов Д.Ю. Оценка параметров разрушающей нагрузки при ударно-волновом нагружении для ответственных строительных конструкций сооружений нефтегазового комплекса // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328. № 3. С. 89 - 95

2. Однокопылов Г.И. Саркисов Д.Ю., Бутузов Е.А. Оценка степени живучести ответственных строительных конструкций при ударно-волновом нагружении // Известия Томского политехнического университета. Инжиниринг георесурсов. 2018. Т. 329. № 12. С. 122 - 135

3. Трекин Н.Н., Крылов В.В. К вопросу о несущей способности железобетонных плит на продавливание при динамическом нагружении на объектах наземной космической инфраструктуры // Научный аспект. 2018. Т. 7. № 4. С. 771

4. Клованич С.Ф., Шеховцов В.И. Продавливание железобетонных плит. Натурный и численный эксперименты». Одесса: ОНМУ, 2011

5. Бирбраер А.Н, Роледер А.Ю. Экстремальные воздействия на сооружения. 2009

6. Крылов В.В. Проверка несущей способности монолитной железобетонной плиты на продавливание при действии динамической нагрузки // Научный аспект. 2019. Т. 3. № 3. С. 320 - 325

7. Крылов В.В., Саркисов Д.Ю., Эргешов Э.Т., Евстафьева Е.Б. Программа экспериментальных исследований несущей способности безбалочных плит на продавливание при динамическом нагружении. Конструкция опытных образцов // Строительные материалы и изделия. 2020. Т. 3. № 3

8. Патент на изобретение № 2726031. Стенд для испытания железобетонных элементов на продавливание при кратковременной динамической нагрузке

9. Sarkisov D.Yu. , Odnokopylov G.I., Krylov V.V., Annenkov A.O. Numerical and experimental studies of deflections of conventional and strengthened reinforced concrete bendable elements under short-term dynamic loading // INCAS BULLETIN. 2021. Vol. 13. Special Issue. https://bulletin.incas.ro/files/sarkisov_odnokopylov_krylov_all_vol_13_special_iss.pdf

10. Jun Yu, Li-zhong Luo, Qin Fang. Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario // Engineering Structures. 2020. Vol. 208. 110336. Рp. 1-19. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2020.110336

11. Alejandro Pérez Caldentey, Yolanda G. Diego, Freddy Ariñez Fernández, Anastasio P. Santos, Testing robustness: A full-scale experimental test on a two-storey reinforced concrete frame with solid slabs // Engineering Structures. 2021. Vol. 240, 112411. Рp. 1-17. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2021.112411

12. Jinjie Men, Liquan Xiong, Jiachen Wang, Guanlei Fan, Effect of different RC slab widths on the behavior of reinforced concrete column and steel beam-slab subassemblies // Engineering Structures. 2021. Vol. 229. 111639. Рp. 1-13. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2020.111639

13. Mohamed Eladawy, Mohamed Hassan, Brahim Benmokrane, Emmanuel Ferrier, Lateral cyclic behavior of interior two-way concrete slab-column connections reinforced with GFRP bars // Engineering Structures. 2020. Vol. 209. 109978. Рp. 1-15. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2019.109978

14. Deifalla A. A mechanical model for concrete slabs subjected to combined punching shear and in-plane tensile forces // Engineering Structures. 2021. Vol. 231. 111787. Рp. 1-14. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2020.111787

15. Yu J.L., Wang Y.C. Modelling and design method for static resistance of a new connection between steel tubular column and flat concrete slab // Journal of Constructional Steel Research. 2020. Vol. 173. 106254. Рp. 1-16. ISSN 0143-974X. https://doi.org/10.1016/j.jcsr.2020.106254

16. Kumar V., Kartik K.V., Iqbal M.A. Experimental and numerical investigation of reinforced concrete slabs under blast loading // Engineering Structures. 2020. Vol. 206. 110125. Рp. 1-13. ISSN 0141-0296. https://doi.org/10.1016/j.engstruct.2019.110125

17. Mao L., Barnett S.J., Tyas A., Warren J., Schleyer G.K., Zaini S.S. Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading // Construction and Building Materials. 2015. Vol. 93. Pр. 822-830. ISSN 0950-0618. https://doi.org/10.1016/j.conbuildmat.2015.05.085

18. Fernández Ruiz M., Mirzaei Y., Muttoni A. Post-Punching Behavior of Flat Slabs // ACI Structural Journal. USA, 2013. Vоl. 110. Рp. 801-812. https://www.researchgate.net/publication/283905342

19. Melo G.S. «Behaviour of Reinforced Concrete Flat Slabs after Local Failure» PhD thesis, Polytechnic of Central London, London, UK, 1990. 214 p. https://www.researchgate.net/publication/352157118

20. More R.S., Sawant V.S. Analysis of Flat Slab. July 2015. Vol. 4. Issue 7. ISSN: 2319-7064. https://www.ijsr.net/get_abstract.php

21. Петров А.Н. Экспериментальные исследования бетона при нагружении сжатием и срезом // Бетон и железобетон. 1965. № 11. С. 34-37


Review

For citations:


Trekin N.N., Sarkisov D.Yu., Krylov V.V., Yvstafieva E.B., Andrian K.R. STRENGTH OF MONOLITHIC REINFORCED CONCRETE SLABS FOR PUNCHING UNDER STATIC AND DYNAMIC LOADING. Building and Reconstruction. 2022;(5):67-79. (In Russ.) https://doi.org/10.33979/2073-7416-2022-103-5-67-79

Views: 254


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)