Preview

Building and Reconstruction

Advanced search

POWER TESTING OF ETFE FILM

https://doi.org/10.33979/2073-7416-2022-103-5-3-12

Abstract

Studies of mechanical properties of ethylene-tetrafluoroethylene (ETFE) film they are relevant for wide application in the construction of translucent coatings in the climatic conditions of Russia, especially in the Arctic zone. Power tests were performed for a film with a thickness of 250 microns on an INSTRON bursting machine, as well as with a uniformly distributed load at positive and negative temperatures. The initial modulus of elasticity according to GOST 34370-2017 was established, which was 1090 MPa. Three loading stages have been identified for the calculations of translucent coatings. In the elastic stage of operation of the ETFE film, the average modulus of elasticity was 35.8 MPa, in the elastic-plastic stage - 1.78...2.71 MPa and in the plastic stage of operation - 0.06...0.086 MPa. Force tests of a membrane made of ETFE film with a thickness of 250 microns on a power triangular frame with a uniformly distributed load of up to 8,577 kPa did not lead to rupture of the membrane at any positive (+15 ...+18 о С) not at subzero temperatures (-23...-29 о С). Repeated mechanical damage (cuts) of the membrane under a load of 8.50 kPa at a temperature of -26 о С also did not lead to its rupture. The deflections of the membrane at positive temperatures reached 84 mm, at negative temperatures - 58.2 mm. Power tests of the ETFE film have shown its ultra-high strength characteristics, which makes it possible to widely use it to create a comfortable environment in structures erected in the Arctic and other territories of Russia when localizing production in Russia.

About the Authors

Sergey N. Ovsyannikov
Tomsk State University of Architecture and Building; Scientific Research Institute of Construction Physics RAASN
Russian Federation


Vasily N. Okolichny
Tomsk State University of Architecture and Building
Russian Federation


References

1. Новое в технологии соединений фтора: Пер. с японск./ Под ред. Н. Исикавы. М.: Мир, 1984. 592 с

2. Houtman R. Materials used for architectural fabric structures / in Llorens J.I // Fabric Structures in Architecture. Woodhead Publishing. Boston. MA. 2015. Pр. 101-120

3. Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. Фторопласты. Л.: Химия, 1978. 232 с

4. Robinson-Gayle S., Kolokotroni M., Cripps A., Tanno S. ETFE foil cushions in roofs and atria // Constr. Build. Mater. 2001. No. 15 (7). Pp. 323-327

5. Chilton J. Lightweight envelopes: ethylene tetra-fluoro-ethylene foil in architecture // Proc. Inst. Civ. Eng. Constr. Mater. 2013. No. 166 (6). Pp. 343-357

6. Chilton J., Lau B. Lighting and the visual environment in architectural fabric structures, in: Fabric Structures in Architecture. 2015. Pp. 203-219

7. Robinson L.A. Structural Opportunities of ETFE (Ethylene Tetra Fluoro Ethylene), Massachusetts Institute of Technology. 2005. 66 p

8. Hu J., et al. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior // Construction and Building Materials. 2017. No. 131. Рp. 411-422

9. Charbonneau L., Polak M.A., Penlidis A. Mechanical properties of ETFE foils: testing and modelling // Constr. Build. Mater. 2014. No. 60. Рp. 63-72

10. Li Y., Wu M. Uniaxial creep property and viscoelastic-plastic modelling of ethylene tetrafluoroethylene (ETFE) foil // Mech. Time-Depend. Mater. 2015. No. 19 (1). Рp. 21-34

11. Chen W., Tang Y., Ren X., Dong S. Analysis methods of structural design and characteristics of numerical algorithm for ETFE air inflated film structures // Spat. Struct. 2010. No.16 (4). Рp.38-43

12. Hu J., Chen W., Sun R., Zhao B., Luo R. Mechanical properties of ETFE foils under uniaxial cyclic tensile loading // Build. Mater. 2015. No.18 (1). Рp. 69-75

13. Hu J., Chen W., Luo R., Zhao B., Sun R. Uniaxial cyclic tensile mechanical properties of ethylene tetrafluoroethylene (ETFE) foils // Constr. Build. Mater. 2014. No. 63 (1). Рp. 311-319

14. Schmid G. ETFE cushions and their thermal and climatic behaviour, in: Tensinet Symposium, Milan, Italy. 2007. Рp. 115-125

15. Hu J., Chen W., Zhao B., Song H. Experimental studies on summer performance and feasibility of a BIPV/T ethylene tetrafluoroethylene (ETFE) cushion structure system // Energy Build. 2014. No.69 (1). Рp.394-406

16. Hu J., Chen W., Zhao B., Song H. Experimental studies on system performance of PV-ETFE cushion system in winter, J. Zhejiang Univ. (Eng. Sci.). 2014. No. 48 (10). Рp. 1816-1821

17. Zehentmaier S. Fluoropolymers in Film Applications // 27th Annual World Symposium on Performance Films. Duesseldorf. April. 2012

18. Цеентмайер С. Пленочные фторполимеры / пер. А. П. Сергеенкова // Полимерные материалы. 2018. № 8. С. 30-38

19. Chen W. Design of Membrane Structure Engineering, China Building Industry Press. 2010

20. Tanigami T., Yamaura K., Matsuzawa S., Ishikawa M., Mizoguchi K., Miyasaka K. Structural studies on ethylene-tetrafluoroethylene copolymer 1. Crystal structure, Polymer. 1986. No.27 (7). Рр. 999-1006

21. Kawabata M. Viscoplastic Properties of ETFE Film and Structural Behavior of Film Cushion, International Association for Shell and Spatial Structures Symposium, Venice, Italy, 2007


Review

For citations:


Ovsyannikov S.N., Okolichny V.N. POWER TESTING OF ETFE FILM. Building and Reconstruction. 2022;(5):3-12. (In Russ.) https://doi.org/10.33979/2073-7416-2022-103-5-3-12

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)