Preview

Строительство и реконструкция

Расширенный поиск

СИЛОВЫЕ ИСПЫТАНИЯ ПЛЕНКИ ЭТФЭ

https://doi.org/10.33979/2073-7416-2022-103-5-3-12

Аннотация

Исследования механических свойств пленки из этилен-тетрафторэтилена (ЭТФЭ) актуальны для широкого применения в строительстве светопрозрачных покрытий в климатических условиях России, особенно в арктической зоне. Силовые испытания выполнены для пленки толщиной 250 мкм на разрывной машине INSTRON, а также при равномерно распределенной нагрузке при положительных и отрицательных темпереатурах. Установлен начальный модуль упругости по ГОСТ 34370-2017, который составил 1090 МПа. Для расчетов светопрозрачных покрытий выявлены три стадии нагружения. В упругой стадии работы пленки ЭТФЭ средний модуль упругости составил 35,8 МПа, в упруго-пластичной стадии - 1,78…2,71 МПа и в пластичной стадии работы - 0,06…0,086 МПа. Силовые испытания мембраны из пленки ЭТФЭ толщиной 250 мкм на силовой треугольной раме при равномерно распределенной нагрузке до 8,577 кПа не привели к разрыву мембраны ни при положительных (+15…+18 о С), ни при отрицательных температурах (-23…-29 о С). Многократные механические повреждения (порезы) мембраны под нагрузкой 8,50 кПа при температуре -26 о С также не привели к ее разрыву. Прогибы мембраны при положительных температурах достигали 84 мм, при отрицательных температурах - 58,2 мм. Силовые испытания пленки ЭТФЭ показали ее сверхвысокие прочностные характеристики, что позволяет при локалиизации производства в России широко использовать ее для создания комфортной среды в сооружениях, возводимых в Арктике и на других территориях России.

Об авторах

Сергей Николаевич Овсянников
Томский государственный архитектурно-строительный университет; Научно-исследовательский институт строительной физики РААСН
Россия


Василий Николаевич Околичный
Томский государственный архитектурно-строительный университет
Россия


Список литературы

1. Новое в технологии соединений фтора: Пер. с японск./ Под ред. Н. Исикавы. М.: Мир, 1984. 592 с

2. Houtman R. Materials used for architectural fabric structures / in Llorens J.I // Fabric Structures in Architecture. Woodhead Publishing. Boston. MA. 2015. Pр. 101-120

3. Паншин Ю.А., Малкевич С.Г., Дунаевская Ц.С. Фторопласты. Л.: Химия, 1978. 232 с

4. Robinson-Gayle S., Kolokotroni M., Cripps A., Tanno S. ETFE foil cushions in roofs and atria // Constr. Build. Mater. 2001. No. 15 (7). Pp. 323-327

5. Chilton J. Lightweight envelopes: ethylene tetra-fluoro-ethylene foil in architecture // Proc. Inst. Civ. Eng. Constr. Mater. 2013. No. 166 (6). Pp. 343-357

6. Chilton J., Lau B. Lighting and the visual environment in architectural fabric structures, in: Fabric Structures in Architecture. 2015. Pp. 203-219

7. Robinson L.A. Structural Opportunities of ETFE (Ethylene Tetra Fluoro Ethylene), Massachusetts Institute of Technology. 2005. 66 p

8. Hu J., et al. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior // Construction and Building Materials. 2017. No. 131. Рp. 411-422

9. Charbonneau L., Polak M.A., Penlidis A. Mechanical properties of ETFE foils: testing and modelling // Constr. Build. Mater. 2014. No. 60. Рp. 63-72

10. Li Y., Wu M. Uniaxial creep property and viscoelastic-plastic modelling of ethylene tetrafluoroethylene (ETFE) foil // Mech. Time-Depend. Mater. 2015. No. 19 (1). Рp. 21-34

11. Chen W., Tang Y., Ren X., Dong S. Analysis methods of structural design and characteristics of numerical algorithm for ETFE air inflated film structures // Spat. Struct. 2010. No.16 (4). Рp.38-43

12. Hu J., Chen W., Sun R., Zhao B., Luo R. Mechanical properties of ETFE foils under uniaxial cyclic tensile loading // Build. Mater. 2015. No.18 (1). Рp. 69-75

13. Hu J., Chen W., Luo R., Zhao B., Sun R. Uniaxial cyclic tensile mechanical properties of ethylene tetrafluoroethylene (ETFE) foils // Constr. Build. Mater. 2014. No. 63 (1). Рp. 311-319

14. Schmid G. ETFE cushions and their thermal and climatic behaviour, in: Tensinet Symposium, Milan, Italy. 2007. Рp. 115-125

15. Hu J., Chen W., Zhao B., Song H. Experimental studies on summer performance and feasibility of a BIPV/T ethylene tetrafluoroethylene (ETFE) cushion structure system // Energy Build. 2014. No.69 (1). Рp.394-406

16. Hu J., Chen W., Zhao B., Song H. Experimental studies on system performance of PV-ETFE cushion system in winter, J. Zhejiang Univ. (Eng. Sci.). 2014. No. 48 (10). Рp. 1816-1821

17. Zehentmaier S. Fluoropolymers in Film Applications // 27th Annual World Symposium on Performance Films. Duesseldorf. April. 2012

18. Цеентмайер С. Пленочные фторполимеры / пер. А. П. Сергеенкова // Полимерные материалы. 2018. № 8. С. 30-38

19. Chen W. Design of Membrane Structure Engineering, China Building Industry Press. 2010

20. Tanigami T., Yamaura K., Matsuzawa S., Ishikawa M., Mizoguchi K., Miyasaka K. Structural studies on ethylene-tetrafluoroethylene copolymer 1. Crystal structure, Polymer. 1986. No.27 (7). Рр. 999-1006

21. Kawabata M. Viscoplastic Properties of ETFE Film and Structural Behavior of Film Cushion, International Association for Shell and Spatial Structures Symposium, Venice, Italy, 2007


Рецензия

Для цитирования:


Овсянников С.Н., Околичный В.Н. СИЛОВЫЕ ИСПЫТАНИЯ ПЛЕНКИ ЭТФЭ. Строительство и реконструкция. 2022;(5):3-12. https://doi.org/10.33979/2073-7416-2022-103-5-3-12

For citation:


Ovsyannikov S.N., Okolichny V.N. POWER TESTING OF ETFE FILM. Building and Reconstruction. 2022;(5):3-12. (In Russ.) https://doi.org/10.33979/2073-7416-2022-103-5-3-12

Просмотров: 136


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)