Preview

Building and Reconstruction

Advanced search

STRENGTH OF WOOD MODIFIED WITH POLYMER COMPOSITION WITH NANOSTRUCTURED FILLER

https://doi.org/10.33979/2073-7416-2022-102-4-41-51

Abstract

Increasing the strength properties of wooden structures is an important task. Wood can have many defects associated with the natural structure (defects) or obtained during operation (rotting, shrinkage, etc.). To increase the strength of wood and, consequently, the bearing capacity of structures based on it, both traditional methods (reinforcement with metal, concrete or reinforced concrete) and currently promising methods of modification with polymer compositions, including those with nanostructured filler, are used. In this work, a study was carried out to determine the compressive strength of modified wood samples along the fibers. Four different resins and two fillers were considered - carbon nanotubes and carboxylated carbon nanotubes, which were added to the binder in different percentages (from 0 to 1.1%). As a modification, the technology of impregnating a low-viscosity polymer composition into the wood body was applied using pulsed overpressure according to the 10-5-10-5-10 min mode. Modified specimens were tested under short-term loads until failure. The results of testing on samples determined the possibility of increasing the strength and deformability of a wooden structure modified with a resin-based polymer composition with the addition of a nanostructured filler.

About the Authors

Mikhail S. Lisyatnikov
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation


Mikhail V. Lukin
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation


Danila A. Chibrikin
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation


Svetlana I. Roshchina
Vladimir State University named after Alexander and Nikolay Stoletovs
Russian Federation


References

1. Bukauskas Aurimas, Mayencourt Paul, Shepherd Paul, Sharma Bhavna, Mueller Caitlin, Walker Pete, Bregulla, Julie. Whole Timber Construction: A State of the Art Review. Construction and Building Materials. 2019. No. 213. Pp. 748-769. doi:10.1016/j.conbuildmat.2019.03.043

2. Chaoji, Chen and Kuang, Yudi and Zhu, Shuze and Burgert, Ingo and Keplinger, Tobias and Gong, Amy and Li, Teng and Berglund, Lars and Eichhorn, Stephen and Hu, Liangbing. Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials. 2020. No. 5. Pp. 1-25. doi:10.1038/s41578-020-0195-z

3. Donaldson, Lloyd. Wood cell wall ultrastructure The key to understanding wood properties and behaviour. IAWA Journal. 2019. No. 40. Pp. 645-672. doi:10.1163/22941932-40190258

4. Walsh-Korb, Zarah and Avérous, Luc. Recent developments in the conservation of materials properties of historical wood. Progress in Materials Science. 2018. No. 102. doi:10.1016/j.pmatsci.2018.12.001

5. Roshchina S., Lukin M., Lisyatnikov M.Compressed-Bent Reinforced Wooden Elements with Long-Term Load. Proceedings of EECE 2019 : Energy, Environmental and Construction Engineering. St. Petersburg, Russia. 2019. Pp. 81-91. doi:10.1007/978-3-030-42351-3_7

6. Лукина А.В. Совершенствование технологии восстановления деструктированной древесины в элементах деревянных конструкций: специальность 05.21.05 "Древесиноведение, технология и оборудование деревопереработки": автореферат диссертации на соискание ученой степени кандидата технических наук / Лукина Анастасия Васильевна. Архангельск, 2014. 22 с

7. Tanasa, Fulga and Teacă, Carmen-Alice and Zănoagă, Mădălina. Protective coatings for wood. 2021. doi:10.1016/b978-0-444-63237-1.00006-1

8. Lisyatnikov M.S., Roshchina S.I., Chukhlanov V.Y., Ivaniuk A.M. Repair compositions based on methyl methacrylate modified with polyphenylsiloxane resin for concrete and reinforced concrete structures. IOP Conference Series: Materials Science and Engineering. Vladimir, 2020. 012113 p. doi:10.1088/1757-899X/896/1/012113

9. Lukin M., Prusov E., Roshchina S. [et al.]. Multi-Span composite timber beams with rational steel reinforcements. Buildings. 2021. Vol. 11. No. 2. Pp. 1-12. doi:10.3390/buildings11020046

10. Friedrich, Daniel. Thermoplastic moulding of Wood-Polymer Composites (WPC): A review on physical and mechanical behaviour under hot-pressing technique.Composite Structures. 2021. No. 262. P. 113649. doi:10.1016/j.compstruct.2021.113649

11. Lee, Seng Hua and Ashaari, Zaidon and Lum, Wei and Ang, Aik and Juliana, A.H. PENG, TAN and Chin, Kit Ling and M. Tahir, Paridah. Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials. 2018. No. 181. doi:10.1016/j.conbuildmat.2018.06.058

12. Roshchina S., Gribanov A., Lukin M. [et al.]. Investigation of the Stress-Strain State of Wooden Beams with Rational Reinforcement with Composite Materials. Lecture Notes in Civil Engineering. 2022. Vol. 182. Pp. 475-483. doi:10.1007/978-3-030-85236-8_42

13. Wang, Xianju and Tu, Dengyun and Chen, Chuanfu and Zhou, Qiaofang and Huang, Huixian and Zheng, Zehao and Zhu, Zhipeng. A thermal modification technique combining bulk densification and heat treatment for poplar wood with low moisture content. Construction and Building Materials. 2021. No. 291. P. 123395. doi:10.1016/j.conbuildmat.2021.123395

14. Лукина А.В., Сергеев М.С. Исследование напряженно-деформированного состояния композитных деревянных балок // Безопасность строительного фонда России. Проблемы и решения: материалы Международных академических чтений. Курск: Курский государственный университет, 2021. С. 183-190

15. Broda, Magdalena and Mazela, Bart. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. Journal of Cultural Heritage. 2017. No. 25. Pp. 149-156. doi:10.1016/j.culher.2017.01.007

16. Broda, Magdalena and Mazela, Bart. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. Journal of Cultural Heritage. 2017. No. 25. Pp. 149-156. doi:10.1016/j.culher.2017.01.007

17. Сергеев М.С., Лукина А.В., Грибанов А.С., Стрекалкин А.А. Развитие исследования деревокомпозитных балок с симметричным армированием // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. №7. С. 46-49

18. Britch M. and Gorbachov N. and Koznacheev Ivan and Makarenko D. Elastic tensions in a wood material subjected to thermo-mechanical treatment by pressure drop. Thermal Science and Engineering Progress. 2019. No. 16. P. 100457. doi:10.1016/j.tsep.2019.100457

19. Патент № 2697564 C1 Российская Федерация, МПК C08L 63/02, C08K 5/17, C08K 5/10. Компонентный состав полимерной композиции для восстановления деструктивных участков элементов деревянных конструкций : № 2018124141 : заявл. 02.07.2018 : опубл. 15.08.2019 / С.И. Рощина, Е.А. Смирнов, М.В. Лукин [и др.], заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)

20. Патент № 2713115 C1 Российская Федерация, МПК B27K 3/08. Способ локальной модификации древесины в строительных конструкциях: № 2018139477 : заявл. 07.11.2018 : опубл. 03.02.2020 / С. И. Рощина, А.С. Грибанова, М.С. Лисятников [и др.], заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)

21. Lukina A., Roshchina S., Lisyatnikov M. [et al.]. Technology for the Restoration of Wooden Beams by Surface Repair and Local Modification. Lecture Notes in Networks and Systems. 2022. Vol. 403. Pp. 1371-1379. doi:10.1007/978-3-030-96383-5_153

22. Болтовский В.С., Остроух О.В., Кардаш Ю.Н. Термохимическое модифицирование древесины диановой смолой // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. 2018. Т. 54. №1. С. 103-108

23. Lukina A., Roshchina S., Gribanov A. Method for Restoring Destructed Wooden Structures with Polymer Composites. Proceedings of EECE 2020 : Energy, Environmental and Construction Engineering. St. Petersburg, Russia. 2020. Pp. 476-474. doi:10.1007/978-3-030-72404-7_45

24. Qiu H. and Han Y. and Fan D. and Li G. and Chu F. Progress in Chemical Modification of Fast-Growing Wood. Cailiao Daobao/Materials Review. 2018. No. 32. Pp. 2701-2708. doi:10.11896/j.issn.1005-023X.2018.15.023

25. Gribanov A., Glebova T., Roschina S. Restoration of Destructive Wood in Supporting Zones of Wooden Beams. Proceedings of EECE 2019: Energy, Environmental and Construction Engineering. St. Petersburg, Russia, 2019. Pp. 157-166. doi:10.1007/978-3-030-42351-3_14

26. Sandberg Dick and Kutnar Andreja and Mantanis George. Wood modification technologies - A review. IForest - Biogeosciences and Forestry. 2017. No. 10. Pp. 895-908. doi:10.895-908.10.3832/ifor2380-010

27. Gribanov A.S., Roshchina S.I., Naichuk A.Y., Melekhov V.I. Wooden beams with local wood modification. IOP Conference Series: Materials Science and Engineering. Vladimir, 2020. 012067 p. doi:10.1088/1757-899X/896/1/012067

28. Miklečić Josip and Turkulin H. and Jirous-Rajkovic, Vlatka. Weathering performance of surface of thermally modified wood finished with nanoparticles-modified waterborne polyacrylate coatings. Applied Surface Science. 2017. No. 408. doi:10.1016/j.apsusc.2017.03.011

29. Łukawski, Damian and Lekawa-Raus, Agnieszka and Lisiecki, Filip and Koziol, Krzysztof and Dudkowiak, Alina. Towards the development of superhydrophobic carbon nanomaterial coatings on wood. Progress in Organic Coatings. 2018. No. 125. Pp. 23-31. doi:10.1016/j.porgcoat.2018.08.025

30. Papadopoulos Antonios and Bikiaris Dimitrios and Mitropoulos Athanasios and Kyzas George. Elastic tensions in a wood material subjected to thermo mechanical treatment by pressure drop. Nanomaterials. 2019. No. 9. P.607. doi:10.3390/nano9040607

31. Teng Teck Jin and Mat Arip, Mohamad Nasir and Sudesh, Kumar and Nemoikina, Anna and Jalaludin, Zaihan and Ng, Eng-Poh and Lee, Hooi-Ling. Conventional Technology and Nanotechnology in Wood Preservation: A Review. Bioresources. 2018. No. 13. Pp. 9220-9252. doi:10.15376/biores.13.4.Teng

32. Muhammad, Adamu and Rahman, Md and Hamdan, Sinin and Bakri, Muhammad Khusairy and Md Yusof, Fahmi Asyadi. Impact of Polyvinyl Alcohol/Acrylonitrile on Bamboo Nanocomposite and Optimization of Mechanical Performance by Response Surface Methodology. Construction and Building Materials. 2020. No. 258. P. 119693. doi:10.1016/j.conbuildmat.2020.119693

33. Chen, Fengjuan and Gong, Amy and Zhu, Mingwei and Chen, Guang and Lacey, Steven and Jiang, Feng and Li, Yongfeng and Wang, Yanbin and Dai, Jiaqi and Yao, Yonggang and Song, Jianwei and Liu, Boyang and Fu, Kun and Das, Siddhartha and Hu, Liangbing. Mesoporous. Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. ACS nano. 2017. No. 11. doi:10.1021/acsnano.7b01350

34. Gao, Chang and Huang, Liang and Yan, Libo and Jin, Ruoyu and Chen, Haoze. Mechanical properties of recycled aggregate concrete modified by nano-particles. Construction and Building Materials. 2020. No. 241. doi:10.1016/j.conbuildmat.2020.118030

35. Esmailpour, Ayoub and Majidi, Roya and Taghiyari, Hamid Reza and Ganjkhani, Mehdi and Mohseni, Seyed Majid and Papadopoulos, Antonios. Improving Fire Retardancy of Beech Wood by Graphene. Polymer. 2020. No. 12. P. 303. doi:10.3390/polym12020303

36. Kolya, Haradhan and Kang, Chunwon. Polyvinyl acetate/reduced graphene oxide-poly (diallyl dimethylammonium chloride) composite coated wood surface reveals improved hydrophobicity. Progress in Organic Coatings. 2021. No. 156. P. 106253. doi:10.1016/j.porgcoat.2021.106253

37. Papageorgiou, Dimitrios and Kinloch, Ian and Young, Robert. Mechanical Properties of Graphene and Graphene-based Nanocomposites. Progress in Materials Science. 2017. No. 90. doi:10.1016/j.pmatsci.2017.07.004

38. Iqbal, Akm and Sakib, Nazmus and Iqbal, A.K.M. and Nuruzzaman, Dewan. Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia. 2020. No. 12. P. 100815. doi:10.1016/j.mtla.2020.100815


Review

For citations:


Lisyatnikov M.S., Lukin M.V., Chibrikin D.A., Roshchina S.I. STRENGTH OF WOOD MODIFIED WITH POLYMER COMPOSITION WITH NANOSTRUCTURED FILLER. Building and Reconstruction. 2022;(4):41-51. (In Russ.) https://doi.org/10.33979/2073-7416-2022-102-4-41-51

Views: 164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)