Preview

Building and Reconstruction

Advanced search

NUMERICAL ANALYTIC METHOD FOR CALCULATION OF PVC WINDOW PROFILES TEMPERATURE DEFORMATION

https://doi.org/10.33979/2073-7416-2022-102-4-3-14

Abstract

The experience of operating PVC windows in areas with low winter outdoor temperatures has shown that they are subject to significant bending temperature deformations, which lead to a decrease in their performance. Nevertheless, these deformations are not taken into account in any way when designing PVC windows, which is due to the lack of an engineering methodology for calculating them for temperature loads. This article presents an engineering approach to the calculation of PVC window profiles temperature deformations. It is demonstrated on the example of a PVC window mullion with a reinforced steel core subjected to temperature bending in winter operating conditions. The calculation is performed in two ways: numerically analytical and simplified analytical. To verify the calculation method, a double-casement window was tested for temperature load in a climate chamber. Comparison of the calculation result with the test results showed a discrepancy of 10.6% (for numerical and analytical calculation) and 16.2% (for analytical calculation). The results of laboratory tests confirmed the assumption adopted in the calculation methodology: the calculation of the mullion temperature deformations when it is hinged to the frame can be carried out without taking into account the rigidity of the casements adjacent to the mullion, since the casements and the mullion are deformed under the influence of temperature together and do not transfer mechanical forces to each other.

About the Authors

Ivan S. Aksenov
Moscow State University of Civil Engineering
Russian Federation


Aleksandr P. Konstantinov
Moscow State University of Civil Engineering
Russian Federation


Aleksey Ad. Verkhovsky
Research Institute of Building Physics of the Russian Academy Architecture and Construction Sciences
Russian Federation


References

1. Елдашов Ю.А., Сесюнин С.Г., Ковров В.Н. Экспериментальное исследование типовых оконных блоков на геометрическую стабильность и приведенное сопротивление теплопередаче от действия тепловых нагрузок // Вестник МГСУ. 2009. № 3. С. 146-149

2. Verkhovskiy A., Bryzgalin V., Lyubakova E. Thermal Deformation of Window for Climatic Conditions of Russia // IOP Conference Series: Materials Science and Engineering. 2018. Vol 463. No 3. doi:10.1088/1757-899X/463/3/032048

3. Konstantinov A. and Verkhovsky A. Assessment of the Wind and Temperature Loads Influence on the PVC Windows Deformation // IOR Conference Series: Materials Science and Engineering. 2020. Vol 753. No 3. doi:10.1088/1757-899X/753/3/032022

4. Fleury G., Thomas M. Variations to window air permeability according to outside temperature // Cahiers Du Centre Scientifique et Technique Du Batiment. 1972. Vol 132. No. 1129

5. Шеховцов А.В. Воздухопроницаемость оконного блока из ПВХ профилей при действии отрицательных температур // Вестник МГСУ. 2011. № 3-1. С. 263-269

6. Henry R., Patenaude A. Measurements of window air leakage at cold temperatures and impact on annual energy performance of a house // ASHRAE Transactions. 1998. Vol 104. No Pt 1B. Pp. 1254-1260

7. Kehrli D. Window air leakage performance as a function of differential temperatures and accelerated environmental aging // Thermal performance of exterior envelopes of building III. 1985. Pp. 872-890. [Online]. Available: https://web.ornl.gov/sci/buildings/conf-archive/1985 B3 papers/066.pdf

8. Кунин Ю.С., Алекперов Р.Г., Потапова Т.В. Зависимость воздухопроницаемости светопрозрачных конструкций от температурных воздействий // Промышленное и гражданское строительство. 2018. № 10. С.114-120

9. Куренкова А.Ю. Уроки 2010 года, или особенности изготовления оконных блоков из ПВХ-профилей шириной более 68 мм // Светопрозрачные конструкции. 2011. № 1. С. 10-12

10. Van Craenendonck S., Lauriks L., Vuye C., Kampen J. Local effects on thermal comfort: Experimental investigation of small-area radiant cooling and low-speed draft caused by improperly retrofitted construction joints // Building and Environment. 2018. Vol 147. Pp. 188-198. doi:10.1016/j.buildenv.2018.10.021

11. Schiepel D. and Westhoff A. Study on the Influence of Turbulence on Thermal Comfort for Draft Air // New Results in Numerical and Experimental Fluid Mechanics XIII. STAB/DGLR Symposium 2020. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2021. Pp. 494-503. doi:10.1007/978-3-030-79561-0_47

12. Manz H., Frank T. Analysis of thermal comfort near cold vertical surfaces by means of computational fluid dynamics // Indoor and Built Environment. 2004. Vol 13. No 3. Pp. 233-242. doi:10.1177/1420326X04043733

13. Konstantinov A.P., Lambias Ratnayake M. Calculation of PVC windows for wind loads in high-rise buildings // E3S Web of Conferences. 2018. Vol. 33. doi:10.1051/e3sconf/20183302025

14. Калабин В.А. Оценка величины тепловой деформации ПВХ-профиля. Часть 1. Зимние поперечные деформации // Светопрозрачные конструкции. 2013. № 1-2. С. 6-9

15. Калабин В.А. Оценка величины тепловой деформации ПВХ-профиля. Часть 2. Летние поперечные деформации // Светопрозрачные конструкции. 2013. № 3. С. 12-15

16. Сесюнин С.Г., Елдашов Ю.А. Моделирование сопряженной задачи термоупругости на примере анализа вариантов конструктивного оформления оконного блока зданий // Светопрозрачные конструкции. 2005. № 4. С. 14-18

17. Аксенов И.С., Константинов А.П. Аналитический метод расчета напряженно-деформированного состояния оконных профилей ПВХ при действии температурных нагрузок // Вестник МГСУ. 2021. Т. 16. Вып.11. С. 1437-1451. doi:10.22227/1997-0935.2021.11.1437-1451

18. Aksenov I.S., Konstantinov A.P. Temperature deformations of PVC window profiles with reinforcement // International Journal for Computational Civil and Structural Engineering. 2022. 18(2). P. 98-111. https://doi.org/10.download22337/2587-9618-2022-18-2-98-111

19. Gerasimova E., Galyamichev A., Dogru S. Stress-strain state of insulated glass unit in structural glazing systems // Magazine of Civil Engineering. 2020. Vol 98. No 6. doi:10.18720/MCE.98.8

20. Carbary L.D., Kimberlain J.H. Structural silicone glazing: optimizing future designs based on historical performances // Intelligent Buildings International. 2020. Vol 12. No. 3. Pp. 169-179. doi:10.1080/17508975.2018.1544881


Review

For citations:


Aksenov I.S., Konstantinov A.P., Verkhovsky A.A. NUMERICAL ANALYTIC METHOD FOR CALCULATION OF PVC WINDOW PROFILES TEMPERATURE DEFORMATION. Building and Reconstruction. 2022;(4):3-14. (In Russ.) https://doi.org/10.33979/2073-7416-2022-102-4-3-14

Views: 144


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)