INFLUENCE OF LARGE AGGREGATES ON THE ENERGY AND POWER CHARACTERISTICS OF STEEL FIBER REINFORCED CONCRETE
https://doi.org/10.33979/2073-7416-2022-101-3-110-118
Abstract
At present, composite materials are gaining more and more development in construction, including the use of dispersed reinforced concrete, which is due to its significantly improved physical, mechanical and operational characteristics compared to traditional concrete and reinforced concrete.
The article presents the results of the influence of coarse filler in the composition of the composite on the energy and power characteristics of the crack resistance of fiber-reinforced concrete reinforced with steel anchor fibers. The process of deformation and the mechanism of destruction of steel fiber reinforced concrete have been studied.
To do this, in accordance with the provisions of GOST 29167 "Methods for determining the characteristics of crack resistance (fracture toughness) under static loading", steel-fiber-reinforced concrete sample beams were tested with control of the applied load and the deflection caused by it. Based on the data obtained, diagrams of the dependence of the load on the deflection were constructed, after their processing and additional constructions, the energy costs for static destruction, tensile strength in bending, and the stress intensity factor were determined.
It has been established that the value of the conditional specific effective energy consumption for static failure and tensile strength in bending of fiber-reinforced concrete samples with a matrix of heavy concrete with coarse aggregate turned out to be lower than that of fiber-reinforced concrete samples with a matrix of fine-grained concrete, which is explained by the lower adhesion of the steel anchor fiber to the matrix, and a corresponding decrease in their efficiency.
About the Authors
Y. V. PUKHARENKORussian Federation
Pukharenko Yury V., Federal State Budgetary Educational Institution of Higher Education «Saint Petersburg State University of Architecture and Civil Engineering», doctor of technical sciences, Professor, Head of the Department of Technology of Building Materials and Metrology. Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences, chief researcher
St. Petersburg
Moscow
D. A. PANTELEEV
Russian Federation
Panteleev Dmitrii A., Federal State Budgetary Educational Institution of Higher Education «Saint Petersburg State University of Architecture and Civil Engineering», Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Technologies of Building Materials and Metrology. Research Institute of Building Physics of the Russian Academy of Architecture and Building Sciences, Senior Researcher
St. Petersburg
Moscow
V. I. MOROZOV
Russian Federation
Morozov Valerii I., Doctor of Technical Sciences, Professor, Professor of the Department of Reinforced Concrete and Stone Structures
St. Petersburg
M. I. ZHAVORONKOV
Russian Federation
Zhavoronkov Mikhail I., Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Technologies of Building Materials and Metrology
St. Petersburg
References
1. Minenko E.Yu., Gracheva Yu.V., Shlapakova O.I. Otsenka `energeticheskih harakteristik dispersnoarmirovannogo betona v dorozhnom stroitel'stve [Evaluation of the energy characteristics of dispersed-reinforced concrete in road construction] // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Serija: Stroitel'stvo i arhitektura. 2013. № 32 (51). Pp. 66–70. (rus)
2. Stepanov M.V., Moiseenko G.A. Diagrammy deformirovanija melkozernistogo vysokoprochnogo betona i vysokoprochnogo stalefibrobetona pri szhatii [Diagrams of deformation of fine-grained high-strength concrete and highstrength steel fiber concrete under compression] // Stroitel'stvo i rekonstruktsija. 2019. № 3 (83). Pp. 11–21. (rus)
3. Kostrikin M.P. Effektivnost' dispersnogo poliarmirovanija betona nizkomodul'nymi voloknami [Efficiency of dispersed polyreinforcement of concrete with low-modulus fibers] // Vestnik grazhdanskih inzhenerov. 2021. № 2 (85). Pp. 128–133. (rus)
4. Travush V.I., Karpenko N.I., Erofeev V.T., Erofeeva I.V., Tarakanov O.V., Kondraschenko V.I., Kesarijskij A.G. Issledovanie treschinostojkosti betonov novogo pokolenija [Investigation of crack resistance of new generation concretes] // Stroitel'nye materialy. 2019. № 10. Pp. 3–11. (rus)
5. Davidenko M.A., Davidenko A.I., Matveev V.P., Miroshnikova A.A. Opredelenie predel'nyh deformatsij stalefibrobetona na osnove `energeticheskih zavisimostej diagramm deformirovanija betona [Determination of ultimate deformations of steel fiber concrete based on the energy dependences of concrete deformation diagrams] // Nauchnyj vestnik gosudarstvennogo obrazovatel'nogo uchrezhdenija Luganskoj Narodnoj Respubliki «Luganskij natsional'nyj agrarnyj universitet». 2020. № 8–3. Pp. 214–219. (rus)
6. Kolchunov V.I., Kuznetsova K.Ju., Fedorov S.S. Model' kriterija treschinostojkosti i prochnosti ploskonaprjazhennyh konstruktsij iz vysokoprochnogo fibrobetona i fibrozhelezobetona [Model of the criterion of crack resistance and strength of plane-stressed structures from high-strength fiber-reinforced concrete and fiber-reinforced concrete] // Stroitel'stvo i rekonstruktsija. 2021. № 3 (95). Pp. 15–26. (rus)
7. Zertsalov M.G., Khoteev E.A. Calculating the crack resistance of fiber-reinforced concrete lining of freeflow water tunnels using linear fracture mechanics // Power Technology and Engineering. 2019. V. 53. № 4. P. 440–444.
8. Zhang W., Lee D., Lee C., Zhang X., Ikechukwu O. Bond performance of sfrc considering random distributions of aggregates and steel fibers // Construction and Building Materials. 2021. V. 291. P. 123304.
9. Shen J., Zhang Y. Fiber-reinforced mechanism and mechanical performance of composite fibers reinforced concrete // Journal Wuhan University of Technology, Materials Science Edition. 2020. V. 35. № 1. P. 121–130.
10. Storm J., Kaliske M., Pise M., Brands D., Schroder J. A comparative study of micro-mechanical models for fiber pullout behavior of reinforced high performance concrete // Engineering Fracture Mechanics. 2021. V. 243. P.107506.
11. Enfedaque A., Alberti M.G., Galvez J.C., Cabanas P. Numerical simulation of the fracture behavior of highperformance fiber-reinforced concrete by using a cohesive crack-based inverse analysis // Materials. 2022. V. 15. №1.
12. Puharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Sovershenstvovanie metodov opredelenija silovyh i `energeticheskih harakteristik treschinostojkosti fibrobetona [Improvement of methods for determining the power and energy characteristics of fiber concrete crack resistance] // Vestnik MGSU. 2019. T. 14. Vyp. 3. Pp. 301–310. (rus)
13. Puharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Metody opredelenija harakteristik treschinostojkosti fibrobetona [Methods for determining the characteristics of crack resistance of fiber-reinforced concrete] // Fundamental'nye, poiskovye i prikladnye issledovanija RAASN po nauchnomu obespecheniju razvitiju arhitektury, gradostroitel'stva i stroitel'noj otrasli RF v 2018 godu: Sb. nauch. tr. RAASN. T. 2. M.: Izdatel'stvo ASV, 2019. Pp. 448–457. (rus)
14. Zhavoronkov M.I. Metodika opredelenija `energeticheskih i silovyh harakteristik razrushenija fibrobetona [Method for determining the energy and power characteristics of the destruction of fiber-reinforced concrete] // Vestnik grazhdanskih inzhenerov. 2014. № 6 (47). Pp. 155–160. (rus)
15. Zhavoronkov M.I., Vlasova A.V., Lukina E.N., Shakarov A.R. Opredelenie harakteristik treschinostojkosti fibrobetona, armirovannogo stekljannoj, bazal'tovoj i uglerodnoj fibroj [Determination of characteristics of crack resistance of fiber-reinforced concrete reinforced with glass, basalt and carbon fiber] // Molodoj uchenyj. 2021. № 48 (390). Pp. 39–47. (rus)
16. Puharenko Yu.V., Panteleev D.A., Zhavoronkov M.I. Diagrammy deformirovanija tsementnyh kompozitov, armirovannyh stal'noj provolochnoj fibroj [Diagrams of deformation of cement composites reinforced with steel wire fiber] // Academia. Arhitektura i stroitel'stvo. 2018. № 2. Pp. 143–147. (rus)
17. Puharenko Yu.V. Diagrammy razrushenija tsementnyh kompozitov, armirovannyh amorfnometallicheskoj fibroj [Fracture diagrams of cement composites reinforced with amorphous metal fiber] / Yu.V. Puharenko, V.I. Morozov, D.A. Panteleev, M.I. Zhavoronkov // `Ekspert: teorija i praktika. – 2020. № 3 (6). – Pp. 50–55. (rus)
Review
For citations:
PUKHARENKO Y.V., PANTELEEV D.A., MOROZOV V.I., ZHAVORONKOV M.I. INFLUENCE OF LARGE AGGREGATES ON THE ENERGY AND POWER CHARACTERISTICS OF STEEL FIBER REINFORCED CONCRETE. Building and Reconstruction. 2022;(3):110-118. (In Russ.) https://doi.org/10.33979/2073-7416-2022-101-3-110-118