Preview

Building and Reconstruction

Advanced search

RESISTANCE OF REINFORCED CONCRETE FRAMES OF MULTISTOREY BUILDINGS WITH INDIRECT REINFORCEMENT IN OVEREXTREME LIMIT STATES

https://doi.org/10.33979/2073-7416-2022-101-3-87-97

Abstract

The results of studies of monolithic reinforced concrete frames of multi-storey buildings and reinforced concrete frames simulating fragments of such frames in over-extreme limit states caused by special actions are presented. Two options for reinforcing the beams of the frames are considered: with double reinforcement, which ensures the operation of the beam when the force flows in the frame and, accordingly, the sign of the moment change; option with double reinforcement and installation of additional indirect reinforcement in the support zones of the beams for the entire height of the section. Primary and secondary design models were built using volumetric finite elements for concrete and reinforcement rods. The obtained design parameters of deformations, crack patterns and frame failure patterns for all options are compared with each other and with the results of testing physical models of these structures. To assess the effect of mixed reinforcement on the limiting deformations of compressed concrete in over-extreme limit states, based on the theory of plasticity of concrete and reinforced concrete G.A. Geniyeva, deformation dependencies are constructed for a typical reinforced concrete element reinforced with rods in one direction and meshes in the other two under uniaxial compression and volumetric deformation.
It has been established that the use of indirect reinforcement in combination with double longitudinal reinforcement in bending elements under static-dynamic loading conditions significantly increases the ultimate deformation of the compressed zone. This reinforcement option can working way to protect monolithic reinforced concrete frames of multi-storey buildings from progressive collapse under special actions.

About the Authors

DINH QUOC PHAN
Moscow State University of Civil Engineering
Russian Federation

Phan Dinh Quoc, postgraduate student of the Department of Reinforced Concrete and Stone Structures

Moscow



T. A. ILIUSHCHENKO
South West State University; Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences
Russian Federation

Iliushchenko Tatiana A. - Southwest State University, candidate of technical sciences, teacher of unique buildings and structures. Research Institute of Building Physics of Russian Academy of Architecture and Construction Sciences, engineer

Kursk
Moscow



M. A. AMELINA
South West State University
Russian Federation

Amelina Margarita A., student of the Department of Reinforced Concrete and Stone Structures

Kursk



References

1. Bondarenko V.M., Kolchunov V.I., Vorob'ev E.D., Osovskih E.V., Docenko V.N. Konstrukcionnaya bezopasnost' karkasov zhilyh zdanij [Structural safety of residential building frames] // BST: Byulleten' stroitel'noj tekhniki. 2004. №. 1. S. 8-11 (rus)

2. Bondarenko V.M., Klyueva N.V., Kolchunov V.I., Androsova N.B. Nekotorye rezul'taty analiza i obobshcheniya nauchnyh issledovanij po teorii konstruktivnoj bezopasnosti i zhivuchesti [Some results of the analysis and generalization of scientific research on the theory of constructive safety and survivability] // Stroitel'stvo i rekonstrukciya. 2012. №. 4. S. 3-16 (rus)

3. Travush V.I., Kolchunov V.I., Leont'ev E.V. Zashchita zdanij i sooruzhenij ot progressiruyushchego obrusheniya v ramkah zakonodatel'nyh i normativnyh trebovanij [Protection of buildings and structures from progressive collapse within the framework of legislative and regulatory requirements] // Promyshlennoe i grazhdanskoe stroitel'stvo. 2019. №. 2. S. 46-54 (rus)

4. Fedorova N.V., Savin S.Y. Progressive collapse resistance of facilities experienced to localized structural damage-an analytical review // Build. Reconstr. 2021. Т. 95. №. 3. С. 76-108.

5. Travush V.I., Shapiro G.I., Kolchunov V.I., Leont'ev E.V., Fedorova N.V. Proektirovanie zashchity krupnopanel'nyh zdanij ot progressiruyushchego obrusheniya [Design of protection of large-panel buildings against progressive collapse] // ZHilishchnoe stroitel'stvo. 2019. №. 3. S. 40-46 (rus)

6. SP 385. 1325800. 2018. Zashchita zdanij i sooruzhenij ot progressiruyushchego obrusheniya. Pravila proektirovaniya. Osnovnye polozheniya [Protection of buildings and structures from progressive collapse. Design rules. The main provisions.]. M.: Standartinform, 2018. S. 19 (rus)

7. Unified Facilities Criteria. Design of buildings to resist progressive collapse (UFC 4-023-03). Washington, DC: Department of Defence (DoD), 2009.

8. CEN Comite Europeen de Normalisation. EN 1991-1-7: eurocode 1 – actions on structures – part 1–7: general actions – accidental actions. Brussels (Belgium): CEN, 2006.

9. Australian Building Codes Board (ABCB). National construction code (NCC). Council of Australian Governments. 2016.

10. China Association for Engineering Construction Standardization (CECS). Code for anti-collapse design of building structures, CECS 392: 2014. Beijing (China), 2014.

11. Y.-L. Fan, J. Wang, and H.-L. Wang, Experimental study on collapse performance of one-story reinforced concrete frames using external prestressing tendons // Journal of Central South University. 2018. Vol. 49. No. 5. P. 1244–1253.

12. Kang S.B., Tan K.H. Progressive collapse resistance of precast concrete frames with discontinuous reinforcement in the joint // Journal of Structural Engineering. 2017. Т. 143. №. 9. С. 04017090.

13. Yang T., Chen W., Han Z. Experimental Investigation of Progressive Collapse of Prestressed Concrete Frames after the Loss of Middle Column // Advances in Civil Engineering. 2020. Т. 2020.

14. Klyueva N.V., Koren'kov P.A. Metodika eksperimental'nogo opredeleniya parametrov zhivuchesti zhelezobetonnyh ramno-sterzhnevyh konstruktivnyh system [Method of experimental determination of parameters of survivability of reinforced concrete frame-bar structural systems] // Promyshlennoe i grazhdanskoe stroitel'stvo. 2016. No2. S.44-48. (rus)

15. Fedorova N.V., Ngoc V.T. Deformation and failure of monolithic reinforced concrete frames under special actions // Journal of Physics: Conference Series. 2019. (1425). C. 012033.

16. Fedorova N.V., Fan D.K., Nguen T.CH. Eksperimental'nye issledovaniya zhivuchesti zhelezobetonnyh ram s rigelyami, usilennymi kosvennym armirovaniem [Experimental studies of the survivability of reinforced concrete frames with crossbars reinforced with indirect reinforcement] // Stroitel'stvo i rekonstrukciya. 2020. №. 1. S. 92-100 (rus)

17. Kolchunov V., Iliushchenko T., Savin S. Deformation and Failure of Prestressed Reinforced Concrete Frames in Ultimate States // Proceedings of MPCPE 2021. Springer, Cham, 2022. С. 41-53.

18. Rastorguev B.S., Vanus D.S. Raschet izgibaemyh zhelezobetonnyh elementov s kosvennym setchatym armirovaniem szhatoj zony [Calculation of bending reinforced concrete elements with indirect mesh reinforcement of the compressed zone] // Promyshlennoe i grazhdanskoe stroitel'stvo. 2010. №. 12. S. 58 (rus)

19. Krishan A.L., Sabirov R.R., Krishan M.A. Strength calculation of compressed reinforced concrete elements with indirect reinforcement with nets // Architecture Building Education. 2014. Т. 1. №. 3. С. 215-224.

20. Tamrazyan A.G., Manaenkov I.K. K raschetu izgibaemyh zhelezobetonnyh elementov s kosvennym armirovaniem szhatoj zony [To the calculation of bending reinforced concrete elements with indirect reinforcement of the compressed zone] // Promyshlennoe i grazhdanskoe stroitel'stvo. 2016. №. 7. S. 41-44 (rus)

21. Vu N.S., Yu B., Li B. Stress-strain model for confined concrete with corroded transverse reinforcement //Engineering Structures. 2017. Т. 151. С. 472-487.

22. Dem'yanov A.I., Al'kadi S.A. Statiko-dinamicheskoe deformirovanie zhelezobetonnyh elementov prostranstvennoj ramy pri ih slozhnom soprotivlenii [Static-dynamic deformation of reinforced concrete elements of a spatial frame with their complex resistance] // Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2018. №. 11. S. 20-33 (rus)

23. Geniev G.A., Kissyuk V.N., Tyupin G.A. Teoriya plastichnosti betona i zhelezobetona [The theory of plasticity of concrete and reinforced concrete]. M.: Strojizdat, 1974. 316 s. (rus)

24. SP 63.13330.2018. Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozheniya [Concrete and reinforced concrete structures. Basic Provisions.]. M.: Standartinform, 2018. S. 152 (rus)


Review

For citations:


PHAN D., ILIUSHCHENKO T.A., AMELINA M.A. RESISTANCE OF REINFORCED CONCRETE FRAMES OF MULTISTOREY BUILDINGS WITH INDIRECT REINFORCEMENT IN OVEREXTREME LIMIT STATES. Building and Reconstruction. 2022;(3):87-97. (In Russ.) https://doi.org/10.33979/2073-7416-2022-101-3-87-97

Views: 229


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)