Preview

Building and Reconstruction

Advanced search

TIME FACTOR AT THE GEOTECHNICAL BIM DESIGN

https://doi.org/10.33979/2073-7416-2022-101-3-51-59

Abstract

The information model spreading throughout all lifetime of a building has to take into consideration the changes in the materials properties over time. Unlike the man-made structures with the well-defined properties, the soils are characterized by heterogeneity and variability of characteristics. The soils properties, such as a compressibility and a shear strength, are changed due to building loads, seasonal freezing-thawing processes, water content variations and other factors. The latent, slowly developing geological processes can take place at the ground. Moreover, some soils properties used for prediction, for example, a long-term settlement caused by a secondary consolidation, dissolution or decomposition of soil particles, vibration are not always determined by ordinary surveys. These properties should be verified in situ observation.
The geotechnical information models, the use of which is expected for a long time, should be created not for separate building sites, but for the territories of large enterprises, cities, or urban areas with the same type of geological conditions. This work should be preceded by the development of the technical standards, software and documents defining the responsibilities and rights of survey and design companies, investors, and municipal administrations, including the ownership of soil survey data.
As an example, the geotechnical challenges of the Arkhangelsk city territory are discussed. The main factors that should be accepted in model are following: the presence of multi-meter peat and soft clayey soils deposits, the settlement of which has not stabilized for decades, as well as fluctuations of the groundwater level caused by the setting up of drainages and clogging of their filters.

About the Author

A. L. NEVZOROV
Northern (Arctic) Federal University named after M.V. Lomonosov
Russian Federation

Nevzorov Alexander L., doctor of technical science, professor of the geotechnical department, advisor of RAACS

Arkhangelsk



References

1. Belostockij A.M. Cifrovye tekhnologii v stroitel'stve. Iz proshlogo v budushchee. Rol' RAASN// Doklady nauchno-otraslevyh otdelenij RAASN. Stroitel'nye nauki. 2021. S. 34–38.

2. Boldyrev G.G., Barvashov V.A., SHejnin V.I., Kashirskij V.I., Idrisov I.H., Diveev A.A. Informacionnye sistemy v geotekhnike – 3D-geotekhnika // Geotekhnika. 2019. T.11. №2. S. 6-27.

3. Boldyrev G.G., Idrisov I.H., Redin A.V., Diveev A.A. BIM-geotekhnika i perspektivy ee razvitiya v Rossijskoj Federacii // Geotekhnika. 2019. T.12. №4. S. 6-22.

4. Boldyrev G.G., Kondrat'ev A.YU. Informacionnye sistemy v stroitel'stve // ZHilishchnoe stroitel'stvo. 2019. №9. S.17-23.

5. Ivahnova G. YU., Nevzorov A.L. Osobennosti interpretacii rezul'tatov kompressionnyh ispytanij torfa// Stroitel'stvo i arhitektura. 2020. T.8, №1. S. 26–32.

6. Razvodovskij D.E., SHulyat'ev S.O., Stavnicer L. R. Primenenie BIM v geotekhnike// ZHilishchnoe stroitel'stvo. 2018. №11. S.3-8.

7. SHashkin A. G., SHashkin K. G., Bogov S. G., SHashkin V. A., SHashakin M. A. Monitoring zdanij i sooruzhenij pri stroitel'stve i ekspluatacii. SPb: Izd-vo instituta «Georekonstrukciya», 2021. 640 s.

8. Beaufils M., Grellet S., Le Hello B., Lorentz J., Beaudouin M., Castro-Moreno J. Geotechnical data standardization and management to support BIM for underground infrastructures and tunnels. World Tunnel Congress, May 2019. Italy, Naples. 2019. 11 p. hal-02056440

9. Brennan E. An examination of the use of Geotechnical BIM to provide value engineering solutions for coastal infrastructure. Capstone project from the MSc in a BIM. Dublin: Technological Univ. 2021. 18 p.

10. Cerovsek T. A review and outlook for a building information model (BIM): A multistandpoint framework for technological development. Advanced engineering informatics. 2011. Vol. 25(2), Pp. 224-244.

11. Chapman D., Providakis S., Christopher R. BIM for the underground – An enabler of trenchless construction. Underground Space. 2020. Vol. 5. Pp. 354-361. https://doi.org/10.1016/j.undsp.2019.08.001

12. Cheng J. Construction and visualization of a three-dimensional model of an engineering geological body. Arabian Journal of Geosciences. 2021. Vol. 14. 8 p. https://doi.org/10.1007/s12517-021-06600-x

13. Eastman C., Fisher D., Lafue D., Lividini J., Stoker D., Yessios C. An outline of the building description system. Pittsburg: Carnegie-Mellon Univ., 1974. Pp. 1–23.

14. Eurocode 7: Geotechnical design. Part 1: General rules. CEN, 2004. 171 p.

15. Gondar J., Pintoa A., Sampaioa Z. Study of BIM applied to geotechnical project. Lisbon: University of Lisbon –Tecnico Lisboa. 2018. 10 p.

16. Grice C., Kessler H. Collaborative geotechnical BIM technologies [Lecture]. British Geological Survey. Natural Environment Research Council. 2015. 19 p.

17. Konietzky H. BIM for geotechnical engineering. Freiberg: TU Bergakademie - Geotechnical Institute. 2020. 30 p.

18. Lau S.E.N., Zakaria R, Aminudin E., Saar C.C. Yusof A., Wahid C.M. A review of application building information modeling (BIM) during pre-construction stage: Retrospective and future directions. IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 143, 012050. 9 p. doi:10.1088/1755-1315/143/1/012050

19. Lee M. L., Lee Y. L., Goh S. L., Koo C. H., Lau S. H., Chong S. Y. Case studies and challenges of implementing geotechnical building information modelling in Malaysia. Infrastructures. 2021. Vol. 6, No. 145. https://doi.org/10.3390/infrastructures6100145.

20. Papadonikolaki E., Vrijhoef R., Wamelink J. A BIM-based supply chain model for AEC. 1st Conference in Building Information Modelling (BIM) in Design. Construction and Operations/ WIT Transactions on the built environment. 2015. Pp. 181-193.

21. Perez-Sanchez J. C., Mora-Garcia R. T., Perez-Sanchez V. R., Piedecausa-Garcia B. From CAD to BIM: A new way to understand architecture. WIT Transactions on the built environment. 2017. Vol. 169, No 1. Pp. 45-54. doi:10.2495/BIM170051.

22. Tawelian L. R., Mickovski S. B. The implementation of geotechnical data into the BIM process. The 3rd International conf. on transportation geotechnics (ICTG 2016). Procedia Engineering. 2016. Vol. 143. Pp. 734–741. doi:10.1016/j.proeng.2016.06.115.

23. Tyurin D. A., Nevzorov A. L. Numerical simulation of long-term peat settlement under the sand embankment. Procedia Engineering. 2017. Vol. 175. Pp. 51-56. doi:10.1016/j.proeng.2017.01.014.

24. Wu J.,Chen J., Chen G., Wu Z., Zhong Y., Chen B., Ke W., Huan J. Development of data integration and sharing for geotechnical engineering information modeling based on IFC. Hindawi advances in civil eng. 2021. article ID 8884864. 15 p. https://doi.org/10.1155/2021/8884864.

25. Zhang J., Wu C., Wang Y., Ma Y., Wu Y., Mao X. 2018) The BIM-enabled geotechnical information management of a construction project. Computing. 2018. Vol.100, No 1. Pp. 47-63. doi:10.1007/s00607-017-0571-8.


Review

For citations:


NEVZOROV A.L. TIME FACTOR AT THE GEOTECHNICAL BIM DESIGN. Building and Reconstruction. 2022;(3):51-59. (In Russ.) https://doi.org/10.33979/2073-7416-2022-101-3-51-59

Views: 115


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)