INFLUENCE OF CREEP ON THE STRESS-STRAIN STATE OF REINFORCED CONCRETE MULTISTORY BUILDINGS
https://doi.org/10.33979/2073-7416-2022-101-3-14-22
Abstract
With long-term action of the load in concrete and reinforced concrete, an increase in inelastic deformations occurs, which is associated with the creep of concrete. The viscous properties of any concrete are determined by its measure of creep and creep coefficient. Modern software systems make it possible to calculate structures taking into account the rheological properties of concrete. To analyze the stress-strain state of a multi-storey building, taking into account the long-term deformation of concrete, a 45-storey model of a frame building was calculated. The creep characteristics of concrete were set according to Eurocode 2. The results of the calculation showed that the creep of concrete during its long-term deformation leads to a redistribution of forces in the building elements, an increase in floor slab deflections and an increase in the buckling of eccentrically compressed elements. A comparative analysis of the creep coefficients of high-strength concretes according to Eurocode 2 and SP 63.13330.2018 was carried out, which showed the need for an experimental study of the values specified in SP 63.13330.2018 due to a single coefficient for concretes of class B60-B100.
About the Author
E. V. DOMAROVARussian Federation
Domarova Ekaterina V., senior teacher of the department of reinforced concrete and stone structures
References
1. Krylov S.B, Arleninov P.D. Sovremennye issledovaniya v oblasti teorii polzuchesti betona [Modern research in the field of the theory of concrete creep].Vestnik NITs Stroitel'stvo. 2018. No 1(16). С. 67-75. (rus)
2. Li Y., Qiang S., Xu W., Hua X., Xu C., Lai J., Chen B. Verification of concrete nonlinear creep mechanism based on meso-damage mechanics. Construction and Building Materials. 2021. 276. 122205. https://doi.org/10.1016/j.conbuildmat.2020.122205
3. Tamrazyan A.G., Esayan S.G. Mekhanika polzuchesti betona. Moscow: MGSU, 2012. 490 p. (rus)
4. Tamrazyan A.G. K raschetu zhelezobetonnykh elementov s uchetom polzuchesti i stareniya na osnove reologicheskoi modeli betona [On the calculation of reinforced concrete elements with due regard for creep and aging on the basis of rheological model of concrete]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2012. No 7. Pp. 26-27. (rus)
5. Yao Zhou Concrete creep and thermal effects on the dynamic behavior of a concrete-filled steel tube arch bridge. Journal of Vibroengineering, Vol. 16, Issue 4. 2014. Рp. 1735-1744.
6. Sanzharovskii R.S., Manchenko M.M. Nelineinaya teoriya polzuchesti betona i zhelezobetona i sovremennye normy [Nonlinear theory of concrete and reinforced concrete creep and modern standards]. Stroitel'naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2017. No 1. Pp. 23-35. (rus)
7. Mishina A.V., Bezgodov I.M., Andrianov A.A. Prognozirovanie predel’nykh deformatsiy polzuchesti sverkhvysokoprochnogo stalefi brobetona [Prediction of maximum creep strain of high performancesteel fiber reinforced concrete]. Vestnik MGSU. 2012. No. 12. Pp. 66—70. (rus)
8. Barabanshchikov Yu.G., Arkharova A.A., Ternovskii M.V. Beton s ponizhennoi usadkoi i polzuchest'yu [Concrete with the lowered shrinkage and creep]. Construction of Unique Buildings and Structure. 2014. No 7 (22). Pp.152-165. (rus)
9. Karpenko N.I., Kaprielov S.S., Petrov A.N., Bezgodov I.M., Moiseenko G.A., Stepanov M.V., Chilin I.A. Issledovanie fiziko-mekhanicheskikh i reologicheskikh svoistv vysokoprochnykh stalefibrobetonov iz samouplotnyayushchikhsya smesei [Research of physical-mechanical and rheological properties of high-strength steelfiber concretes from self-compacting mixtures]. Fundamental'nye, poiskovye i prikladnye issledovaniya RAASN po nauchnomu obespecheniyu razvitiya arkhitektury, gradostroitel'stva i stroitel'noi otrasli Rossiiskoi Federatsii v 2017 godu: Sb. nauchn. tr. RAASN. T.2. Moscow: Izdatel'stvo ASV. 2018. Pp.237-246. (rus) doi:10.22337/9785432302663-237-246
10. Karpenko N.I., Mishina A.V., Travush V.I. Vliyanie vozrasta na fiziko- mekhanicheskie i reologicheskie kharakteristiki vysokoprochnogo stalefibrobetona [Influence of age on physical-mechanical and rheological characteristics of high-strength steel fiber reinforced concrete]. Stroitel'stvo i rekonstruktsiya. 2015. No 4(60). Pp. 23-31.(rus)
11. Stepanov M.V., Moiseenko G.A. Razvitie eksperimental'nogo podkhoda k opredeleniyu mery polzuchesti melkozernistogo vysokoprochnogo betona i stalefibrobetona pri ratsional'nom soderzhanii fibry [Development of an experimental approach to determining the measure of creep of fine-grained high-strength concrete and steel-fiberreinforced concrete with a rational fiber content]. Stroitel'stvo i rekonstruktsiya. 2018. No 3(77). Pp. 98-104.(rus)
12. Travush V.I., Murashkin V.G. Vliyanie polzuchesti na raspredelenie deformatsii i napryazhenii v izgibaemom elemente [Influence of creep on the distribution of strains and stresses in a bending element].Stroitel'stvo i rekonstruktsiya. 2017. No 2. Pp.57-70. (rus)
13. Tamrazyan A.G. Zhestkost' izgibaemykh zhelezobetonnykh elementov s uchetom nelineinoi polzuchesti vysokoprochnogo betona na osnove vyazko-uprugoi modeli nasledstvennogo stareniya [Rigidity of bending reinforced concrete elements taking into account nonlinear creep of high strengths concrete on the basis of is viscous - elastic model of hereditary ageing].Vestnik MGSU. 2011. No 2. Pp. 121—126. (rus)
14. Sapountzakis E., Katsikadelis J. Creep and Shrinkage Effect on the Dynamic Analysis of Reinforced Concrete Slab-and-Beam Structures. European Conference on Computational Mechanics. Munich, Germany. 1999. Pp.370.
15. Elistratov V.N. K voprosu rascheta szhatykh zhelezobetonnykh elementov s uchetom mgnovennoi nelineinosti i nelineinoi polzuchesti betona [On the issue of calculation of compressed reinforced concrete elements, taking into account instantaneous non-linearity and non-linear creep of concrete].Sovremennye problemy nauki i obrazovaniya. 2013. No 6. (rus)
16. Tamrazyan A.G. Dinamicheskaya ustoichivost' szhatogo zhelezobetonnogo elementa kak vyazkouprugogo sterzhnya [Dynamic stability of a compressed reinforced concrete element as a viscoelastic rod]. Vestnik MGSU. 2011. No 1-2. Pp. 193-196. (rus)
17. Pekus-Sakhnovskii D.N. Eksperimental'noe issledovanie nesushchei sposobnosti tsentral'no szhatykh gibkikh zhelezobetonnykh stoek pri dlitel'nom vozdeistvii nagruzki [Experimental study of increased capacity of centrally compressed flexible reinforced concrete props under prolonged load]. Stroitel'nye konstruktsii. Kiev: Budіvel'nik, 1965. No 2. Pp.98–108. (rus)
18. Russian Building Code SP 63.13330.2018 Concrete and reinforced concrete structures. Generalprovisions. (rus)
19. Androsova N.B., Kolchunov V.I. Zhivuchest' ramno-sterzhnevogo zhelezobetonnogo karkasa zdaniya v zapredel'nykh sostoyaniyakh[Viability of a frame-rod reinforced concrete framework of a building in limiting states]. Stroitel'stvo i rekonstruktsiya.2021. No5(97). Pp. 40-50.(rus) doi:10.33979/2073-7416-2021-97-5-40-50
20. Androsova N., Kolchunov V. Survivability Exposition of a Long-Term Deformable Reinforced Concrete Building Frame Under Accidental Actions. In: Vatin N., Roshchina S., Serdjuks D. (eds) Proceedings of MPCPE 2021. Lecture Notes in Civil Engineering, vol 182. Springer, Cham. 2022. https://doi.org/10.1007/978-3-030-85236-8_29
21. EN 1992-1-1 (2004): Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings.
Review
For citations:
DOMAROVA E.V. INFLUENCE OF CREEP ON THE STRESS-STRAIN STATE OF REINFORCED CONCRETE MULTISTORY BUILDINGS. Building and Reconstruction. 2022;(3):14-22. (In Russ.) https://doi.org/10.33979/2073-7416-2022-101-3-14-22