Inverse Cauchy problem for beams in building structures
https://doi.org/10.33979/2073-7416-2022-100-2-13-25
Abstract
A quality index of the coefficient grid inverse Cauchy problem for beams in building structures is proposed. The indicator is based on the theory of regularization of inverse problems. An articulated support of a beam on a column is modeled analytically and by a full-scale experiment. Models of measurement and calculation are investigated for a uniform continuous error rate of deflection measurement and calculation of beam identification parameters. Models differ in various combinations of types of external load.
A measure of the influence of the error of the measuring instrument and the distribution of approximation grid nodes on the error in determining the coefficients of the beam deflection equation with a fixed first coefficient is proposed. The measure of influence is described by the dimensionless absolute condition number of the problem. The values of the dimensionless absolute condition number and the quality index of the problem are analyzed depending on the distribution of approximation grid nodes, the error of the measuring instrument, and the type of measurement and calculation model.
It is proposed to use the obtained analytical dependencies for the analysis of building structures at the stage of experimental and theoretical studies.
About the Author
A. P. LoktionovRussian Federation
Loktionov Askold P. – doctor of Engineering, Associate Professor
Kursk
References
1. Perelmuter A.V. Obratnye zadachi stroitel'noi mekhaniki [Inverse problems of structural mechanics]. Vestnik Tomskogo gosudarstvennogo arxitekturno-stroitel`nogo universiteta. 2020. Vol. 22. No. 4. Pp. 83-101. (rus). doi: 10.31675/1607-1859-2020-22-4-83-101 (rus).
2. Kashevarova G.G., Tonkov, Y.L., Tonkov I.L. Intellektual'naya avtomatizatsiya inzhenernogo obsledovaniya stroitel'nykh ob"ektov [Intellectual automation of engineering survey of building objects]. International Journal for Computational Civil and Structural Engineering, 2017. Vol. 13. No. 3. Pp. 42-57. (rus). https://doi.org/10.22337/1524-5845-2017-13-3-42-57 (rus).
3. Shi Z., O’Brien W. Development and implementation of automated fault detection and diagnostics for building systems: A review. Automation in Construction. 2019. No. 104. Pp. 215-229. doi: 10.1016/j.autcon.2019.04.002.
4. Meshchikhin I.A., Gavryushin S.S. The envelope method in the problem of choosing a rational composition of measuring instruments. Measurement Techniques. 2021, No. 64. Pp. 151-155.
5. Lehmhus D., Busse M., Structural Health Monitoring (SHM). In: Bosse S., Lehmhus D., Lang W. (eds). Material Integrated Intelligent Systems Technology and Applications: Technology and Applications. John Wiley & Sons Inc.; 2018. Рр. 529–570. 696 p. https://doi.org/10.1002/9783527679249.
6. Chen H-P., Ni Yi-Q. Structural health monitoring of large civil engineering structures. 111 River Street, Hoboken, NI 07030, USA: .John Wiley & Sons Inc., 2018. 302 p. doi:10.1002/9781119166641.
7. Boikov I.V., Krivulin N.P. Priblizhyonny`j metod vosstanovleniya vxodny`x signalov izmeritel`ny`x preobrazovatelej [On an approximate method for reconstructing input signals of measuring transformers]. Izmeritel'naya texnika. 2021. No. 12. Pp. 3-7. doi: 10.32446/0368-1025it.2021-12-3-7 (rus).
8. Haque M.E., Zain M.F.M., Hannan M.A., Rahman M.H. Building structural health monitoring using dense and sparse topology wireless sensor network. Smart Structures and Systems. 2015. Vol. 16. No. 4. Pp. 607-621. https://doi.org/10.12989/sss.2015.16.4.623.
9. Loktionov A.P. Informacionnaya sistema analiza balochny`x e`lementov pod kombinirovannoj nagruzkoj [Information system for analysis of beam elements under combined load]. Structural Mechanics and Analysis of Constructions. 2021. No. 2. Pp. 45-52. doi: 10.37538/0039-2383.2021.2.45.52 (rus).
10. Tusnina V.M. Semi-rigid steel beam-to-column connections. Magazine of Civil Engineering. 2017. Vol. 73. No. 5. Pp. 25-39. https://doi.org/10.18720/MCE.73.3.
11. Tusnina O.A., Danilov A.I. The stiffness of rigid joints of beam with hollow section column. Magazine of Civil Engineering. 2016. Vol. 64. No. 4. Pp. 40-51. https://doi.org/10.5862/MCE.64.4.
12. Lyublinskiy V.A, Tomina M.V. Eksperimental`noe issledovanie prochnosti i podatlivosti vertikal`nogo svarnogo styka [Experimental study of the strength and suppleness of a vertical welded joint]. Sistemy. Metody. Tekhnologii. 2018. Vol. 3. No. 39. Pp. 154-158. doi: 10.18324/2077-5415-2018-3-154-158 (rus).
13. Malakhova A.N., Marinina D.A. Podatlivost` vertikal`ny`x sty`kov krupnopanel`ny`x zdanij na zakladny`x detalyax [The compliance of vertical joints of large-panel buildings made on embedded parts]. Building and Reconstruction. 2019. Vol. 86. No. 6. Pp. 10-18. doi: 10.33979/2073-7416-2019-86-6-10-18 (rus).
14. Siraya T. N. Methods of data processing in measurements and metrological models. Measurement Techniques. 2018. No. 61. Pp. 9-16. https://doi.org/10.1007/s11018-018-1380-y.
15. Smirnova A., Bakushinsky A. On iteratively regularized predictor-corrector algorithm for parameter identification. Inverse Problems. 2020. Vol. 36. No. 12. id.125015. P. 30. doi: 10.1088/1361-6420/abc530.
16. Danilov M.F., Savel'eva A.A. Analysis of basic data of unstable problems of coordinate measurements of geometrical parameters of products. Measurement Techniques. 2018. Vol. 61. No. 6. Pp. 588-594. doi:10.1007/s11018- 018-1469-3.
17. Balakin D. A., Pyt’ev Yu. P. Redukciya izmereniya pri nalichii sub``ektivnoj informacii [Measurement reduction in the presence of subjective information]. Matematicheskoe modelirovanie i chislenny`e metody`. 2018. Vol. 30. No. 12. С. 84–110. doi:10.31857/S023408790001938-52016.
18. Chekushkin V.V., Mikheev K.V. Fast search algorithms for the best approximation polynomials for reproduction of functional dependences in data-measurement systems. Measurement Techniques. 2016. Vol. 59. No. 4. Pp. 351-356. https://doi.org/10.1007/s11018-016-0970-9.
19. Meschikhin I.A., Gavryushin S.S. Kriterii kachestva i algoritm vy`bora reducirovanny`x modelej dlya monitoringa texnicheskix konstrukcij [Quality criteria and algorithm for selecting reduced finite element models for technical design monitoring]. Matematicheskoe modelirovanie i chislenny`e metody`. 2016. Vol. 12. No. 4. Pp. 103- 121. https://doi.org/10.18698/2309-3684-2016-4-103121 (rus).
20. Verbrugge M.W., Wampler C.W., Baker D.R. Smoothing methods for numerical differentiation to identify electrochemical reactions from open-circuit-potential data. Journal of The Electrochemical Society. 2018. Vol. 165. No. 16. Pp. A4000-A4011. https://doi.org/10.1149/2.0951816jes.
21. Vatulyan A.O., Plotnikov D.K. Obratny`e koe`fficientny`e zadachi v mexanike [Inverse coefficient problems in mechanics]. Vestnik Permskogo nacional`nogo issledovatel`skogo politexnicheskogo universiteta. Mexanika. 2019. No. 3. Pp. 37-47. doi: 10.15593/perm.mech/2019.3.04.
22. Denisov A.M. Iterative Method for Solving an Inverse Coefficient Problem for a Hyperbolic Equation. Differential Equations. 2017. Vol. 53. No. 7. Pp. 916–922. doi:10.1134/S0012266117070084.
23. Loktionov A.P. A measuring system for determination of a cantilever beam support moment. Smart Structures Systems. 2017. Vol. 19. No. 4. Pp. 431-439. https://doi.org/10.12989/sss.2017.19.4.431.
24. Loktionov A.P. Numerical differentiation in the measurement model. Measurement Techniques. 2019. No. 62. Pp. 673-680. https://doi.org/10.1007/s11018-019-01677-z.
25. Kudryavcev K.Ya. Algoritm postroeniya polinoma nailuchshego ravnomernogo priblizheniya po eksperimental'nym dannym [Algorithm for constructing a polynomial of the best uniform approximation from experimental data]. Vestnik nacional`nogo issledovatel`skogo yadernogo universiteta MIFI. 2019. Vol. 8. No. 5. Pp. 480-486. https://doi.org/10.1134/S2304487X1905002X.
26. Kalenchuk-Porkhanova A. Best Chebyshev approximation for compression of big information arrays. Proceedings of the 10th International Scientific and Practical Conference named after A. I. Kitov "Information Technologies and Mathematical Methods in Economics and Management (IT&MM-2020)". October 15-16. 2020. Moscow. Russia. Pp. 1-13. URL: http://sunsite.informatik.rwth-aachen.de/ftp/pub/publications/CEUR-WS/Vol-2830.zip. paper25.pdf. (accessed 20.03.2022).
27. Kalitkin N.N., Kolganov S.A. Postroenie approksimatsii, udovletvoryayushchikh chebyshevskomu al'ternansu, The construction of approximations satisfying the Chebyshev alternance Preprinty IPM im. M.V. Keldysha, 2020. № 91. 33 s. https://doi.org/10.20948/prepr-2020-91 (rus).
28. Loktionov A.P. O chislennom differencirovanii pri polinomial`nom priblizhenii [On numerical differentiation under polynomial approximation]. Kursk. Gos. texn. un-t. Kursk., 1999. P. 28. Dep. v VINITI 28.06.99. № 2080-В99. https://elibrary.ru/item.asp?id=24302755. (rus)
29. Loktionov A. P., Maksimov Yu.A., Titov V.S. O chislennom differencirovanii v obratnoj zadache Koshi [Numerical differentiation in the inverse Cauchy problem]. Svarka i rodstvennyye tekhnologii v mashinostroyenii i elektronike. Sbornik nauchnykh tr. Is. 4. Kursk., 2002. Pp. 263-268. URL: https://www.elibrary.ru/item.asp?id=21788616. (accessed 20.04.2021) (rus).
30. Korytov M.S., Shcherbakov V.S., Shershneva E.O., Breus I.V. Approximation methods for the actual trajectory of load carried by overhead crane to the required one – a comparative analysis. Journal of the Serbian Society for Computational Mechanics. 2016. Vol. 10. No. 2. Pp. 45-56. URL: http://www.sscm.kg.ac.rs/jsscm/ downloads/Vol10No2/Vol10No2_05.pdf. (accessed 20.03.2022).
31. Ibrahimoglu B.A. Lebesgue functions and Lebesgue constants in polynomial interpolation. Journal of Inequalities and Applications. 2016. No. 93. Рp. 1-15. https://doi.org/10.1186/s13660-016-1030-3.
32. Yang C. Sensor placement for structural health monitoring using hybrid optimization algorithm based on sensor distribution index and FE grids. Structural Control and Health Monitoring. 2018. Vol. 5. No. 6. P. 2160. https://doi.org/10.1002/stc.2160.
33. Zolotarev E.I. Application of elliptic functions to questions of functions deviating least and most from zero, In: Collected works 2. 1–59 (Izdat. Akad. Nauk SSSR, Moscow, 1932). (rus). https://doi.org/10.21638/11701/spbu01.2020.101.
Review
For citations:
Loktionov A.P. Inverse Cauchy problem for beams in building structures. Building and Reconstruction. 2022;(2):13-25. (In Russ.) https://doi.org/10.33979/2073-7416-2022-100-2-13-25