Preview

Building and Reconstruction

Advanced search

Strength of compressed and non-centrallycompressed reinforced concrete elements with zone reinforcement of steel fiber

https://doi.org/10.33979/2073-7416-2022-99-1-99-109

Abstract

The real nonlinear diagrams of concrete, reinforcement and steel-fiber concrete under dynamic loading are formulated and analytically described. Theoretical and experimental studies of the operation of compressed and non-centrally compressed elements with different levels of load application eccentricity under static and short-term dynamic loads are carried out. 3 reinforced concrete and 9 steel-fiber concrete elements were manufactured and tested for short-term dynamic load under central and off-center compression. New experimental data characterizing the process of deformation and destruction of steel-reinforced concrete models of columns have been obtained. Also, the schemes of destruction and cracking, the dependence of changes in the dynamic load over time, the movement of concrete, reinforcement and steel-fiber concrete over time are obtained. A method has been developed for calculating the strength and stability of such elements, taking into account the reinforcement of the section with steel fiber concrete. The influence of the use of zone reinforcement with steel fiber of compressed and non-centrally compressed reinforced concrete elements is numerically analyzed. The results of the calculation according to the developed methodology are compared with the results of experimental data. The optimal variant of the application of zone reinforcement made of steel fiber for compressed and non-centrally compressed elements operating under static and short-term dynamic loads is proposed. The analysis of the calculation results based on the developed method for calculating the strength of normal sections of non-centrally compressed reinforced concrete and steel-fiber concrete, based on the deformation model, and their comparison with the data of experimental studies under short-term dynamic loading show that the deviations are on average 10-18 %, which indicates that the developed method has sufficient accuracy to solve practical problems.

About the Author

D. G. Utkin
National Research Moscow State University of Civil Engineering
Russian Federation

Utkin Dmitry G. - candidate in technical sciences, docent, associated professor, of the department of reinforced concrete and stone structures

Moscow



References

1. Popov N.N. Rastorguev B.S. Dinamicheskii raschet zhelezobetonnykh konstruktsii [Dynamic calculation of ferro-concrete designs]. Мoscow, Stroyizdat, 1974. 207 p. (rus)

2. Popov N.N., Rastorguev B.S. Voprosy rascheta i konstruirovaniya spetsial'nykh sooruzhenii [Questions of calculation and designing of special constructions].Мoscow, Stroyizdat, 1980. 189 p. (rus)

3. Bazhenov Yu.M. Beton pri dinamicheskom nagruzhenii [Concrete at dynamic load]. Мoscow, Stroyizdat, 1970. 270 p. (rus)

4. Grigor'ev V.I. O koeffitsiente dinamicheskogo uprochneniya stalefibrobetona pri rastyazhenii [About factor dynamic durability of steel fibre reinforced concrete at a stretching]. Research and calculation of spatial designs of civil buildings. The collection of proceedings. Leningrad, 1985. Pp.95-99. (rus)

5. Rabinovich F.N., Kompozity na osnove dispersno armirovannykh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstruktsii [Composites on a basis steel fibre reinforced concrete. Questions of the theory and designing, technology, designs].Мoscow: Izdatel'stvo ASV, 2004. 560 p. (rus)

6. Utkin D.G. Eksperimental'nye issledovaniya szhato-izognutykh zhelezobetonnykh elementov s zonnym armirovaniem iz stal'noi fibry pri kratkovremennom dinamicheskom nagruzhenii [Experimental researches it is compressed - bent ferro-concrete elements with zoned reinforcing from a steel fiber at short-term dynamic load].The bulletin of Tomsk state architectural - building university. 2008.No. 3. Pp. 156-164.(rus)

7. Plevkov V.S., UtkinD.G. / Prochnost' zhelezobetonnyhj elementov s armirovaniem iz stal'noj fibry pri kratkovremennom dinamicheskom nagruzhenii [Durability of reinforced concrete elements with fiberglass reinforcement under short-term dynamic load] / V.S. Plevkov, D.G. Utkin // Nauchno-tehnicheskijzhurnal «Sejsmostojkoestroitel'stvo. Bezopasnost' sooruzhenij», Moskva, 2014. No. 5. Pp. 38-44. (rus)

8. Morozov V.I. Issledovanija fibrozhelezobetonnyh kolonn s vysokoprochnoj armaturoj [The reseafch of steel fibre reinforced concrete columns with high-strength reinforced bars]/V. I. Morozov, A. O. Hegaj // Vestnik grazhdanskih inzhenerov. 2011. No.3(28). Pp. 34-37. (rus)

9. Morozov V.I. Raschet izgibaemyh jelementov s vysokoprochnoj armaturoj s fibrovym armirovaniem rastjanutyh zon [The calculation of bent elements with high-strength reinforced bars with fibre reinforcing the stretched zones]/ V.I. Morozov // Promyshlennoe i grazhdanskoe stroitel'stvo. 2007. No.2. Pp. 36-39. (rus).

10. Plevkov V.S. Prochnost' i deformativnost' zhelezobetonnyh ehlementov s zonnym fibrovym armirovaniem pri kratkovremennom dinamicheskom nagruzhenii [The strength and deformability of reinforced concrete elements with fiber reinforcement. in short-term dynamic loading] /V.S. Plevkov, D.G.Utkin, A.E. Karpov// Sovremennye problemy rascheta zhelezobetonnyh konstrukcij, zdanij i sooruzhenij na avarijnye vozdejstviya. Sbornik dokladov Mezhdunarodnoj nauchnoj konferencii, posvyashchennoj 85-letiyu kafedry zhelezobetonnyh i kamennyh konstrukcij i 100-letiyu so dnya rozhdeniya N.N. Popova (19-20 aprelya 2016 g., Moskva) Мoskva, 2016. Pp. 342-348 (rus).

11. Utkin D.G., Prochnost' izgibaemyh stalefibrozhelezobetonnyh elementov so smeshannym armirovaniem pri kratkovremennom dinamicheskom nagruzhenii [Strength of bent steel-reinforced concrete elements with mixed reinforcement under short-term dynamic loading].The bulletin of Tomsk state architectural - building university. 2017.No. 6. Pp. 62-76.(rus)

12. Kumar V., Kartik K.V., Iqbal M.A. Experimental and numerical investigation of reinforced concrete slabs under blast loading // Engineering Structures. 2020. Vol. 206.

13. Jun Yu, Li-zhong Luo, Qin Fang. Structure behavior of reinforced concrete beam-slab assemblies subjected to perimeter middle column removal scenario // Engineering Structures. 2020. Vol. 208.

14. Caldentey A.P., Diego Y.G., Fernández F.A.,Santos A.P. Testing robustness: A full-scale experimental test on a two-storey reinforced concrete frame with solid slabs // Engineering Structures. 2021. Vol. 240.

15. Jinjie Men, Liquan Xiong, Jiachen Wang, Guanlei Fan. Effect of different RC slab widths on the behavior of reinforced concrete column and steel beam-slab subassemblies // Engineering Structures. 2021. Vol. 229.

16. Eladawy M., Hassan M., Benmokrane B.,Ferrier E. Lateral cyclic behavior of interior two-way concrete slab–column connections reinforced with GFRP bars // Engineering Structures. 2020. Vol. 209.

17. Deifalla A. A mechanical model for concrete slabs subjected to combined punching shear and in-plane tensile forces // Engineering Structures. 2021. Vol. 231.

18. Yu J.L., Wang Y.C. Modelling and design method for static resistance of a new connection between steel tubular column and fl at concrete slab // Journal of Constructional Steel Research. 2020. Vol. 173.

19. Mao L., Barnett S.J., Tyas A., Warren J., Schleyer G.K., Zaini S.S. Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading // Construction and Building Materials. 2015. Vol. 93. Pp. 822–830.

20. Сervenka V., Jendele L., Cervenka J. ATENA Program Documentation. Part 1. Theory. Prague: Cervenka Consulting, 2020. 344 p.


Review

For citations:


Utkin D.G. Strength of compressed and non-centrallycompressed reinforced concrete elements with zone reinforcement of steel fiber. Building and Reconstruction. 2022;(1):99-109. (In Russ.) https://doi.org/10.33979/2073-7416-2022-99-1-99-109

Views: 125


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-7416 (Print)