Relationship of maximum deflections and natural frequencies vibrations of isotropic circular plates with inhomogeneous resistance conditions on the outer and inner contour
https://doi.org/10.33979/2073-7416-2021-98-6-36-42
Abstract
The relationship between the maximum deflections from a static uniformly distributed load W0 and the fundamental frequency of natural transverse vibrations of a round isotropic plate of linearly variable thickness with thickening to the edge under homogeneous conditions of support along the outer contour, depending on the ratio of the thickness of the plate in the center to the thickness along the edge, is considered. According to the results of the study, graphs of the dependence of the maximum deflection and the frequency of natural vibrations of the plate on the ratio t1 / t2 are constructed. It is shown that for round plates of linearly variable thickness at t1/t2<1.1 coefficient K with an accuracy of 5.9% coincides with the analytical coefficient for round plates of constant thickness. Numerical studies shows that when the ratio of the thicknesses on the contour and in the center is equal to two, the difference in the coefficient K, which depends on the relationship between the static and dynamic characteristics of the platinum, is about 25% for hinged support along the contour and up to 37% for rigid support. This indicates a more significant effect of uneven mass distribution for such boundary conditions. >< 1.1 coefficient K with an accuracy of 5.9% coincides with the analytical coefficient for round plates of constant thickness. Numerical studies shows that when the ratio of the thicknesses on the contour and in the center is equal to two, the difference in the coefficient K, which depends on the relationship between the static and dynamic characteristics of the platinum, is about 25% for hinged support along the contour and up to 37% for rigid support. This indicates a more significant effect of uneven mass distribution for such boundary conditions.
About the Authors
A. V. TurkovRussian Federation
Turkov Andrey V., doctor of technical sciences, professor of the department of Building Structures and Materials
Orel
S. Iv. Poleshko
Russian Federation
Poleshko Sergey Iv., master's degree student
Orel
E. An. Finadeeva
Russian Federation
Finadeeva Elena An., candidate of technical sciences, associate professor of the department of Building Structures and Materials, headmaster of the Institute of Architecture and Civil Engineering
Orel
K. V. Marfin
Russian Federation
Marfin Kirill V., candidate of technical sciences, associate professor of the department of Building Structures and Materials
Orel
References
1. Korobko V.I. Ob odnoy "zamechatel`noy" zakonomernosti v teorii uprugikh plastinok // Izvestiya vuzov. Stroitel`stvo i arkhitektura. 1989. № 11. S. 32-36.
2. Korobko V.I., Turkov A.V., Kalashnikova O.V. Poperechnye kolebaniya, progiby i usiliya v odnoproletnykh sostavnykh balkakh s razlichnymi granichnymi usloviyami sloev // Stroitel`naya mekhanika i raschet sooruzheniy. 2010. № 3. S. 65-68.
3. Korobko V.I., Boyarkina O.V. Vzaimosvyaz` zadach poperechnogo izgiba i svobodnykh kolebaniy treugol`nykh plastinok // Vestnik YUzhno-Ural`skogo gosudarstvennogo universiteta. Seriya: Stroitel`stvo i arkhitektura. 2007. № 22 (94). S. 24-26.
4. Turkov A.V., ZHupikova K.A. Vzaimosvyaz` maksimal`nykh progibov i chastot sobstvennykh kolebaniy izotropnykh kol`tsevykh plastin pri sharnirnom opiranii po vneshnemu konturu // Aktual`nye problemy stroitel`stva, stroitel`noy industrii i arkhitektury: sbornik materialov HH mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. Tula, 28-29 iyunya 2019. Tul`skiy gosudarstvennyy universitet. S. 299-302. URL: http://dmitriy.chiginskiy.ru/publications/files/Materialy_XX_MNTK-2019_Tula.pdf (data obrashcheniya: 21.05.2020).
5. Turkov A.V., ZHupikova K.A. Vzaimosvyaz` maksimal`nykh progibov i chastot sobstvennykh kolebaniy izotropnykh kol`tsevykh plastin pri zhestkom zakreplenii po vneshnemu konturu // Aktual`nye problemy sovremennoy kognitivnoy nauki: sbornik statey po itogam vserossiyskoy nauchno-prakticheskoy konferentsii. Volgograd. 30 iyunya 2019. Sterlitamak: AMI, 2019. S. 70-72. URL: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3 Fid%3D38301055 (data obrashcheniya: 21.05.2020).
6. Turkov A.V, Marfin K.V., Bazhenova A.V. Progiby i chastoty sobstvennykh kolebaniy sostavnykh mnogosloynykh kvadratnykh izotropnykh plastin s sharnirnym opiraniem po konturu pri izmenenii zhestkosti svyazey sdviga//Stroitel`stvo i rekonstruktsiya. 2019. №4. S. 65-70.
7. Turkov A.V, Marfin K.V., Vetrova O.A. Progiby i chastoty sobstvennykh kolebaniy sistem perekrestnykh ferm na kvadratnom plane s razlichnymi skhemami opiraniya//Promyshlennoe i grazhdanskoe stroitel`stvo. 2018. №11. S. 42-45.
8. Turkov A.V, Marfin K.V. Opredelenie koeffitsienta zhestkosti shva krugloy sostavnoy izotropnoy plastiny po eio osnovnoy chastote kolebaniy// Stroitel`naya mekhanika i raschet sooruzheniy. 2013. №4. S. 58-62.
9. Turkov A.V, Marfin K.V. Tochnost` rezul`tatov chislennykh issledovaniy kruglykh sostavnykh izotropnykh plastin na podatlivykh svyazyakh pri razlichnom kolichestve konechnykh elementov // Stroitel`stvo i rekonstruktsiya. 2012. №1. S. 40-45.
10. Turkov A.V, Karpova E.V. Issledovanie koeffitsienta zhiostkosti shva dlya treugol`noy sostavnoy izotropnoy plastiny v zavisimosti ot eio osnovnoy chastoty kolebaniy pri raznoy zhiostkosti svyazey sdviga // Stroitel`naya mekhanika i raschet sooruzheniy. 2015. №2. S. 66-69.
11. Turkov A.V, Abashina N.M., Karpova E.S. Progiby i chastoty sobstvennykh kolebaniy sostavnykh rombicheskikh izotropnykh plastin, sharnirno opiortykh po konturu pri izmenenii zhiostkosti svyazey sdviga // Stroitel`stvo i rekonstruktsiya. 2016. №5. S. 45-50.
12. Semenov A.A., Gabitov A.I. Proektno-vychislitel`nyy kompleks SCAD v uchebnom protsesse. Moskva, ASV. 2005. 152 s.
Review
For citations:
Turkov A.V., Poleshko S.I., Finadeeva E.A., Marfin K.V. Relationship of maximum deflections and natural frequencies vibrations of isotropic circular plates with inhomogeneous resistance conditions on the outer and inner contour. Building and Reconstruction. 2021;(6):36-42. (In Russ.) https://doi.org/10.33979/2073-7416-2021-98-6-36-42